Series 32000°

GENIX V.3™ Programmer’s Guide

Customer Order Number 424510771-120
NSC Publication Number 424510771-120A
December 1986

O

Customer Order Number 424510771-120
NSC Publication Number 424510771-120A
December 1986

Series 320009

GENIX V.3™ Programmer’s Guide

© 1986 National Semiconductor Corporation
2900 Semiconductor Drive
P.0. Box 58090
Santa Clara, California 95052-8090

REVISION
A

REVISION RECORD

RELEASE DATE
12/86

SUMMARY OF CHANGES

First Release.

Series 32000® GENIX V.3™

Programmer’s Guide

NSC Publication Number 424510771-120A.

ii

PREFACE

This guide provides information about programming in a GENIX V.3™ system environment. It
does not attempt to teach how to write programs. Rather, it is intended to supplement texts
on programming languages by concentrating on the other elements that are part of getting
programs into operation.

As the title suggests, we are addressing programmers, especially those who have not worked
extensively with the GENIX V.3 system. No special level of programming involvement is
assumed. We hope the book will be useful to people who write only an occasional program as
well as those who work on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system software, may find
this guide lacks the depth of information they need. For them we recommend the
Series 32000® GENIX V.3 Programmer’s Re ference Manual.

Knowledge of terminal use, of a GENIX V.3 system editor, and of the GENIX V.3 system
directory/file structure is assumed. If you feel shaky about your mastery of these basic tools,
you might want to look over the Series 32000 GENIX V.3 User's Guide before tackling this
one.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the prior
written consent of National Semiconductor Corporation.

GENIX V.3, ISE, ISE16, ISE32, and SYS32 are trademarks of National Semiconductor Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.

The GENIx V.3 Operating System is derived from AT&T’s UNIX System V.3 Operating System. Portions of the
documentation for the GENIX V.3 Operating System are derived from AT&T coprighted UNIX V.3 Operating
System documentation and reproduced under License from AT&T.

UNIX is a registered trademark of AT&T.

iii

Chapter 1

Chapter 2

CONTENTS

INTRODUCTION . & & ¢ ot i e e e o e o o o o o o o o o o o o oo
1.1 ORGANIZATION . & v o v v v e o e o o o o o e o o o o o o
1.2 GENIX V.3 SYSTEM PHILOSOPHY SIMPLY STATED
1.3 THECCONNECTION . ¢ &« ¢ ¢ ¢ o o ¢ o o o o o e o o e« o o
1.4 HARDWARE/SOFTWAREDEPENDENCIES« v ¢« ..
1.5 GENIX V.3 SYSTEM TOOLS AND WHERE YOU CAN READ
ABOUTTHEM . & . v v v 4 e e e e e o o o o o oo o oo oo
1.5.1 Tools Covered and Not Covered in thisGuide
1.5.2 The Shell as a Prototyping Tool
1.6 THREE PROGRAMMING ENVIRONMENTS . . « « ¢ ¢ ¢ v v « &
1.6.1 Single-User Programmer
1.7 APPLICATIONPROGRAMMING . « v ¢ ¢ v ¢ ¢ ¢ ¢ o o o o o »
1.7.1 Systems Programmers . . « « « v ¢ ¢ ¢ 4 o o o 0 o o .
1.8 DOCUMENTATION CONVENTIONS . & & ¢ ¢ ¢ ¢ ¢ ¢ v v v o .
1.8.1 Command ReferencesS . « « « « o« o « ¢ o o o o o o « »
1.8.2 Information in the Examples . . . « « ¢ ¢ ¢ ¢ « ¢ . . .
19 SUMMARY & ¢t ¢ o 6 6 e o o o o o o o o o o o o o o o o
PROGRAMMING BASICS . . & & i i e i e e e e e o o oo o oo o
21 INTRODUCTION . & ¢ ¢ ¢t 4 6 e v o e o o o o o o o o« o o oo
2.2 CHOOSING A PROGRAMMING LANGUAGE . . . v v ¢« v« . .
2.2.1 Supported Languages in a GENIX V.3 System
Environment . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o« o o o o o o
2.2.2 Special Purpose Languages . « . ¢ ¢« ¢ ¢ 4 0 4 0 o 0 . .
23 AFTER YOURCODEISWRITTEN « « v v v v v v v e e e e o
231 Compiling and Link Editing « . « ¢« ¢ ¢ o . .
2.4 THE INTERFACE BETWEEN A PROGRAMMING LANGUAGE
ANDTHEGENIX V3SYSTEM . & ¢ ¢ 4 4 ¢ 6 v o ¢ o o o o o
241 Why CIs Used to Illustrate the Interface
242 How Arguments Are Passed toa Program
24.3 System Callsand Subroutines . « « « « ¢« « = ¢ « « « « .
244 Header Filesand Libraries . « « ¢ ¢ ¢ ¢ ¢« ¢ ¢ ¢ « « « &
245 ObjectFileLibraries . « « « & ¢ ¢ ¢ v ¢ o o ¢ o o s o »
246 Input/ OQutput . . « v v v ¢ o v v v e o o o v o o o o

24.7 System Calls for Environment or Status Information . . .
248 ProCesseS .« v v ¢ ¢ 4 4 4 4 e s e o s a4 s e e e e e e
249 ErrorHandling ¢ ¢ v v v vt v vt v oo
2.4.10 SignalsandInterrupts . . « « ¢« ¢ ¢ v 4 o 44 b 0 0. .

Chapter 3

Chapter 4

2.5 ANALYSIS/ DEBUGGING . . = ¢ ¢ o o ¢ ¢ o o o o o o o o o @ 2-34
251 SampleProgram . . . « ¢ ¢ ¢ ¢ o o 0 e o0 oo 2-34
252 CHOW & o & v 4 o v o o o o o o o o o o o o o o o o o 2-40
253 Ctrace . « ¢ ¢ o o o o o o o o o s s 2 s o o o o o o e - 2-40
I N 0 < v 2-48
255 LNt @ ¢ v o v vt e e e e e e s e e e e e e e e e 2-48
256 Prof . . . i it i e e e e e e e e e e e e e e e e 2-48
257 SiZe 4 i it i e e e e e e e e e e s e e e e e e 2-56
258 SHP ¢ ¢ ¢ o 4 o 4 e e e e e e s e e e e e e e e e 2-56
259 SAD. ¢t 4 vttt e e e e e e e e s e e e e e e e 2-56
2.6 PROGRAMORGANIZINGUTILITIES . . « « ¢ ¢ ¢ ¢ 0 ¢ o o o 2-57
2.6.1 The Make Command e e e e e e e e e e 2-57
262 The Archive .« ¢ @ ¢ ¢ ¢ o o ¢ o ¢ o o o o o o o .. 2-58
2.6.3 Use of SCCS by Single-User Programmers 2-65
APPLICATION PROGRAMMING . . ¢ ¢ ¢ ¢ ¢ o o o ¢ o o o o o = o 31
3.1 INTRODUCTION e e e e e e e e e e e e e e e 31
32 APPLICATIONPROGRAMMING . . = « ¢ ¢ ¢ o ¢ ¢ o o o - & . 31
321 NUMDEIS & o o ¢ v o o o ¢ o o o o o o o o o o o o o 32
322 Portabilit] .« « ¢« v o o ¢ 0 o s 0 o e e e e e oo .. 32
323 Documentation .« « ¢« ¢ o ¢ o o 0 o o o 0 o s e 0 o oo 32
324 Project Management . . « « « « ¢ ¢ o o o e e s e 33
33 LANGUAGESELECTION . . ¢ ¢ ¢ ¢ ¢ ¢ o e o o o o o oo o 33
331 Influences o o 0 o0 ... e e e e e e 3-3
3.3.2 Special Purpose Languages . « « « ¢ ¢ ¢ ¢ ¢ o« o o . - 3-4
34 ADVANCED PROGRAMMINGTOOLS « ¢ ¢« ¢ v ¢ o 3-9
341 Memory Management . . . « « ¢ ¢ ¢ ¢ o o o o o o o o 39
342 FileandRecordLocking . « « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o . . 3-10
34.3 Interprocess Communications . . « « « ¢« ¢ ¢ ¢ ¢ ¢ o o . 3-11
34.4 Programming Terminal Screens . . « « « « ¢« ¢ o ¢ . o . 3-14
3.5 PROGRAMMING SUPPORTTOOLS ¢ ¢« ¢ v o v o o 315
: 3.51 Link Edit Command Language . . « « « ¢« « « « ¢ « - . 3-15
3.5.2 Common Object File Format . . « « « « « ¢« ¢ ¢ ¢ ¢ « 3-16
353 Libraries « ¢ ¢« ¢ ¢ o o 0 0 o e 0 o s s e o s e e e o 3-16
3.54 -Symbolic Debugger . . « ¢« « « ¢ ¢ ¢ o o o o o o o o . 3-24
355 LintasaPortabilityTool . .« . « « ¢« o ¢ o o ¢ o o o o 3-24
36 PROJECTCONTROLTOOLS. . . ¢ « ¢ ¢ v ¢ o o . « oo 325
361 MaKe ¢ v ¢ ¢« v v o o o o s o s s s s e e s e e e e e 3-25
362 SCCS & v v v v v o v e oo o o o o o c e e e e e e 3-26
37 LIBER,ALIBRARYSYSTEM ¢ ¢ e e e oo 3-27
AWK & i ittt e e i et e e e e e e e s e e e e e e e 4-1
41 INTRODUCTION . . ¢ ¢ ¢ v ¢t ¢ o o o o o o o o o o o oo oo 4-1
4.1.1 Program Structure . « . « « « « « « o » e e e e e e 4-1
412 LexicalUnits ¢« ¢ o o o o c e e e s e e e e 4-2

- Vi -

O

O

Chapter 5

Chapter 6

4.1.3 Primary Expressions . . . « ¢ ¢ . ¢ o 00 0 b 0. 4-9

414 Terms . ¢ v v v vt b e e e e e e e e e e e e e e e 4-14
415 EXDressions .« « o« o ¢ o o o o o o o s 0 o o 0 0 0 0 .. 4-15
42 USINGAWK . & o i i i ittt e e et e e e et e e e 4-16
43 INPUT ANDOUTPUT ¢ ¢ i v v v v it et v v v . 4-17
4.3.1 Presenting Your Program for Processing 4-17
4.32 Input:Recordsand Fields ¢ .« v o oo .. 4-18
4.3.3 Sample Input File, Countries . . « « v ¢ ¢ v ¢ o o o « 4-18
4.34 Input: From the Command Line 4-19
435 OutputtPrinting ¢ o v v v i i e .. 4-20
4.36 Output:toDifferent Files . « « ¢ v ¢« ¢ ¢ ¢ ¢ v v v o o 4-24
437 Output: toPipes . « v ¢ v ¢ v v v 4 4 e e e e e e e . 4-24
44 PATTERNS. . . . ¢ o i i i i i e e et e et e e e e e e 4-25
441 BEGINandEND ¢ i v v v v v v v v v o 4-25
44.2 Relational EXpressions . .« « « ¢ ¢ ¢ v ¢ 4 o 0 0 0 0 . 4-26
443 Regular Expressions ¢ v v vt v o vt 0. 4-27
444 Combinationsof Patterns « « « « « v ¢ ¢ o ¢ o o ¢« 0 . . 4-28
445 PatternRanges ¢ 0 v it ittt e e e ... 4-29
45 ACTIONS . ¢ i i i i i i e e e e e e e et e e e e e e e 4-30
4.5.1 Variables, Expressions, and Assignments 4-30
4.5.2 Initializationof Variables . . . « 4-31
453 Field Variables ¢ v v v v v v it e e .o . 4-31
454 String Concatenation . . « « v « 4 ¢ ¢ ¢ 4 o 0 0 .0 .. 4-32
4.5.5 Special Variables . « ¢« « v ¢ 4 ¢ ¢ ¢ 4 4 4 4 0 4 0w ow 4-32
456 TYPE o v v v it ot e et e e e e e e e e e e e e e 4-33
457 ATITAYS ¢ ¢ o o o o o o o o o o o o o o o o e o e e . 4-33
46 SPECIALFEATURES . . & ¢ ¢t vt v v v v o o o o o o v oo 4-34
4.6.1 Built-InFunctions . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 4 e 4 a0 0. 4-34
462 Flowof Control « « v v v v v v 4 v o ¢ o o o o o 0 o 4-36
4.6.3 Report Generation « « « « « o o « o o o o o o o o 4 o W 4-39
4.6.4 Cooperation withthe Shell 4-40
4.6.5 Multidimensional ATTaYS « « « « o « o ¢ o o o o o o o & 4-41
LEX & ot i e 5-1
51 AN OVERVIEW OF LEX PROGRAMMING . . . ¢« v « v v . . . 51
52 WRITINGLEXPROGRAMS ¢t v i 4t i i e e e v e 52
5.2.1 The Fundamentalsof LexRules 5-2
522 AdvancedlexUsage . . . « v v v v v v v v v v v v o 5-6
523 UsinglexwithYacco oo v v v v 5-11
5.3 RUNNING LEX UNDER THE GENIX V.3SYSTEM 5-13
YACC . o i i i e e e e e e et e e e e e e e e e e e e e 6-1
61 INTRODUCTION . . « ¢ ¢ v v v o v e et e e e o e e e v 6-1
6.2 BASICSPECIFICATIONS ¢ ¢ ¢ ¢ ¢ it e v e e e e v 6-3
621 ACHONS « ¢ ¢ 4ttt et e e e e e e e e e e e ... 6-5

- Vil -

Chapter 7

Chapter 8

6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

622 lexical AnalysiS « « ¢« ¢ o ¢ ¢ o ¢ o o o o o o o . . o .
PARSEROPERATION . . « « « v v v v e e e e e e e e e e
AMBIGUITY AND CONFLICTS « « « « v v v v v e v v v un
PRECEDENCE - « + v o v v o vt e e e e eee e e
ERRORHANDLING « « « « + v o v e e e e o tee e e en
THE YACC ENVIRONMENT .« « « « o v v o v v ™ e

HINTS FOR PREPARING SPECIFICATIONS . . « ¢ ¢ ¢« ¢ ¢ ¢ & &
681 InputStyle . . ¢ ¢ v ¢t o o o o o o v b o o o o o e o
682 ILeftRecurSion . « « « ¢ ¢« ¢ o ¢ ¢ o o o o o o o s « o «
683 lexicalTie-Ins. . . . « o« « . e e e e e s e e e e e
684 ReservedWords e e e e e e .« o .

ADVANCEDTOPICS . . ¢ ¢ ¢ ¢t v e o e o e e o o o o o oo
6.9.1 Simulating error and acceptin Actions . . .« . ¢«
6.9.2 Accessing Values in Enclosing Rules «
6.9.3 Support for Arbitrary Value Types . . « « « ¢« ¢« ¢ . & .
694 YaccInputSyntax « « ¢ ¢ ¢ o o v ¢ o o o o o o o o o

EXAMPLES ¢t e oo e e e e e e e
6.10.1 ASimpleExample . . .« ¢ ¢ ¢ ¢ ¢« ¢t ¢t o 0 0t o o o .. .
6.10.2 An Advanced Example « s e e e .

FILE AND RECORD LOCKING e e s e e s e e e

71
7.2
7.3

74

INTRODUCTION . . ¢ ¢ ¢ v v ¢t e v o o o o o o o oo e e
TERMINOLOGY .« ¢ ¢ ¢ ¢ v vt o o e o o e o o o o o oo o

FILEPROTECTION . . & ¢ ¢ ¢ ¢t o ¢t o e o e v o o o oo ..
7.3.1 Opening a File for Record Locking . « « « « « « ¢ ¢ « . &
7.32 SettingaFileLock e s e e e s e
7.3.3 Setting and Removing Record Locks o« o e e e
7.34 Getting Lock Information
7.35 Deadlock Handling. . « v ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o

SELECTING ADVISORY OR MANDATORY LOCKING.

741 Caveat Emptor—Mandatory Locking

7.42 Record Locking and Future Releases of the GENIX V. 3
System e e o s e s e s e s s e e e s e s e

SHAREDLIBRARIES . . & ¢ ¢ ¢ ¢ttt e e e o o o o o o o o oo o

8.1
8.2

INTRODUCTION . . v ¢ v o ¢ ¢ ¢ ¢ o o e o o e e s e e e

USING A SHAREDLIBRARY ¢ ¢ v ¢t v e v v o v o o
8.2.1 What is a Shared Library? . . « « « ¢ ¢« ¢ ¢ « « . .« ..
8.2.2 The GENIX V.3 System Shared Libraries
82.3 Buildingan AoutFile . . « « ¢ ¢« ¢ ot o e i 00 .
824 Coding an Application . . . « .« . = ¢ ¢
8.2.5 Deciding Whether to Use a Shared Library
8.2.6 How Shared Libraries Save Space

- Vviii -

6-8
6-9
6-14
6-18
6-21
6-24

6-25
6-25
6-25
6-27
6-28

6-28
6-28
6-28
6-29
6-31
6-34
6-34
6-37
7-1
7-1
7-1
7-2
7-3
7-4
7-6
7-9

7-12

7-12
7-13

O

M

Chapter 9

Chapter 10

8.3

8.4

9.1

9.2

9.3

9.4

8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12

8.31
8.3.2
8.3.3

How Shared Libraries Are Implemented
The Host Library and Target Library

TheBranch Table . . . & ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o ¢ ¢« o o

How Shared Libraries Might Increase Space Usage

Identifying a.out Files that Use Shared Libraries

Debugging a.out Files that Use Shared Libraries
BUILDING A SHARED LIBRARY

The Building Process . . .« « ¢« ¢« « ¢ ¢ v o v 0 0 0 v o
AnExample . . ¢ . v . v it i e et e e e e e e e
Guidelines for Writing Shared Library Code

SUMMARY . ¢ i i it e et et e e e e e e et e o e e a
INTERPROCESS COMMUNICATION . . + ¢« ¢ ¢ ¢ ¢ ¢ ¢t e 0 o o o o &
INTRODUCTION . . ¢ ¢ ¢ v v o e v e e e e e o o e o v o o
MESSAGES . . & ¢t i i e e e i e e e e e e e e e e e e

9.2.1
9.2.2
9.2.3

Getting Message QUEUES « ¢ ¢ « o o o« ¢ o o o o o o o &
Controlling Message Queues . = . « « « « « o o o = o « &
Operations for Messages . « « « « ¢ ¢ ¢« ¢ o o ¢ ¢ o o &

SEMAPHORES . . . ¢ ¢ ¢t i i i e e e e e e o o e o o o o

9.31
9.3.2
9.33
9.34

Using Semaphores . « « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o &
Getting Semaphores . « « o ¢« ¢ c ¢ o o ¢ o o o o o o o
Controlling Semaphores . . « . « ¢« o ¢ ¢« ¢ ¢ o o o . .
Operations on Semaphores . « « « o « « « o o o « o« « &

SHARED MEMORY + « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o e o o o o o o o o

9.4.1
9.4.2
94.3
9.4.4

Using Shared Memory . « « « ¢ ¢ ¢ ¢ ¢ ¢ o o o o = « &
Getting Shared Memory Segments « « « « o . .
Controlling Shared Memory . . « « « « « ¢ ¢ ¢ o o o &
Operations for Shared Memory . . « « « ¢ « ¢ v « o « »

CURSES/TERMINFO ¢ ¢ v v it v v e e vt v oo v oo o
101 INTRODUCTION . . ¢ v v v v v v v e b 0 o o o o o o o o oo
102 OVERVIEW . . . & @ i i i i it et i e v e e e v v v o o

10.3

10.2.1
10.2.2
10.2.3
10.2.4

WhatisCurses? . o v v ¢ v v ¢ e o o o o o o o o o o o
What Is Terminfo? . . ¢« ¢ ¢ ¢ ¢ v ¢ ¢ ¢ ¢ o o o o o o s
How Curses and Terminfo Work Together
Other Components of the Terminal Information

UtIlItIBS o & & ¢ o

WORKING WITH CURSESROUTINES

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7

What Every Curses Program Needs
The Header File <cursesh>.
Compiling a Curses Program
Running a Curses Program
More About Initscr() and Lines and Columns
More About Refresh() and Windows
Getting Simple OutputandInput

-ix -

10.3.8 Controlling OutputandInput . . « . « « ¢ ¢ ¢« ¢ o o o & 10-24

10.3.9 Building Windowsand Pads . . . « « . . « « ¢ . o . 10-30

10.3.10 Using Advanced Curses Features « « « « « o « & 10-36

10.4 WORKING WITH TERMINFO ROUTINES e o« o« o 10-40

10.4.1 What Every Terminfo Program Needs 10-41

10.4.2 Compiling and Running a Terminfo Program 10-42

10.4.3 An Example Terminfo Program « « - . . . 10-42

10.5 WORKING WITH THE TERMINFO DATABASE. 10-45

10.5.1 Writing Terminal Descriptions . . . « . « ¢ « ¢ ¢ ¢ « & 10-45

10.5.2 Comparing or Printing Terminfo Descriptions 10-53

10.5.3 Converting a Termcap Description to a Terminfo

Description & « o v ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o s s o o o 10-53

106 CURSESPROGRAMEXAMPLES . . & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o 10-54

10.6.1 The EditorProgram ¢« o0 o v o o o o 10-54

10.6.2 The Highlight Program . . « « « ¢ « ¢« ¢« ¢ ¢ « ¢ o o & & 10-60

10.6.3 The Scatter Program . . « « « ¢« o ¢ ¢ o ¢ ¢ ¢ o o o o « 10-61

10.6.4 TheShow Program « « « ¢ ¢ ¢ ¢ o o = & .« .. 10-63

10.6.5 The TwoProgram « .« « & ¢ e o e o s e e 10-64

10.6.6 The Window Program « ¢ ¢ ¢ ¢ ¢ ¢ o o o o o & 10-67

Chapter 11 THE COMMON OBJECT FILE FORMAT (COFF) v v v v v e v v e e 11-1

11.1 INTRODUCTION . «. & ¢ ¢ ¢ ¢ ¢« « o o o o o s o s o 2 o o o o 11-1

11.2 DEFINITIONS ANDCONVENTIONS . . ¢« « ¢ ¢« ¢ ¢« o o & « .. 11-3

11.2.1 SeCtiONS « « o o o o o o o « o o o s o o o o o o o o o o 11-3

11.2.2 Physical and Virtual Addresses . « « « « ¢ ¢ ¢« ¢ o ¢« & & 11-3

11.3 THEFILEHEADER .« & « ¢ ¢ ¢ ¢ ¢ o o « o o o o s o o o o o« 11-3

11.3.1 Field SiZeS « ¢ o ¢ ¢ o o« o o o o o o o s s o o o o o 11-3

11.32 MagicNumbers . . . « ¢ ¢ ¢ ¢ 0 o ¢ 0 0 0 o o o o . 115

11.33 Flags « o ¢« ¢ ¢ o o e o o e o o o o o o o o o o o s oo 11-5

11.3.4 File Header Declaration e e e e s e e e e 11-5

114 OPTIONAL HEADER INFORMATION . ¢ ¢ ¢ « ¢ « o o o o o « 11-5

11.4.1 Standard Operating System A.out Header 11-8

11.4.2 Optional Header Declaration « « « . . . « .. 11-12

11.5 SECTIONHEADERS . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « o o o o o « e e e o . 11-12

1151 Flags ¢ o o o o ¢ o o o o o o o o s s o o o o o o o o 11-12

11.5.2 Section Header Declaration . « « « « o o o o o « o« o « & 11-12

11.5.3 .bss Section Header @ . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o « 11-12

116 SECTIONS e e e e e e e e e e e e s e e s 11-17

11.7 SECTIONS AND SERIES 32000 MODULES 11-17
11.8 RELOCATION INFORMATION ¢ ¢« ¢ o . e e e o o 11-18

11.9 RELOCATION ENTRY DECLARATION . . « ¢ ¢ ¢ ¢ o o o « o & 11-18

11IOLINENUMBERS . . . & ¢ 4t o o v e e e e o o o o o o o o« 11-20

Chapter 12

11.11 LINE NUMBER DECLARATION ¢ ¢ ¢ v ¢ ¢ ¢ 0 o o« & 11-20

1112 SYMBOL TABLE . . . & v i vt et et e e e e e e e e v o 11-21
1113 SPECIAL SYMBOLS . & & & v v vt et e e e e e e e e o o oo 11-22
111131 Inner BlockS « & & v ¢ 6 o v vt e v e e e e e e e e e 11-22

11.14 SYMBOLS ANDFUNCTIONS . . . ¢ ¢ ¢ v ¢ ¢t o 0 0 o o o o 11-27
11.15 SYMBOL TABLEENTRIES e e . 11227
11.15.1 Symbol Names . ¢ &« ¢ ¢ ¢ ¢ o ¢ ¢ o o ¢ e o o o o o o« 11-27
11152 Storage ClasseS « o« ¢ ¢ o o o o o o o o o o o o 4 o o o s 11-27
11.15.3 Storage Classes for Special Symbols 11-32
11.15.4 Symbol Value Field ¢ ¢ ¢ ¢« ¢ ¢« ¢ e ¢ v o o o 11-32
11.15.5 Section Number Field 11-32
11.15.6 Section Numbers and Storage Classes 11-37
11157 TYype ENtry o ¢ ¢ ¢ o ¢ e ¢ e o o ¢ o o o o o o o o o« 11-37
11.15.8 Symbol Interpretation Environment 11-41
11.15.9 Type Entries and Storage Classes« 11-41
11.15.10Structure for Symbol Table Entries 11-41

11.16 AUXILTARY TABLEENTRIES . . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ e o o ¢ o & 11-41
11161 File Names . . ¢ ¢ v ¢ ¢ ¢ ¢ ¢ o o o &« e e e e e e 11-45
11162 SectionS « o & o o o ¢ o e o o o o o o o o o 0 0 e e o 11-45
11,163 TagNames . « ¢ o ¢ ¢ ¢ o o o o o o o o o o o o o o« 11-45
11.164 End of Structures . . « « ¢ v ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o 11-45
11165 Functions « « « v ¢ v v o o o ot e o o o o o s 0 o .. 11-47
11.16.6 ATTAYS « ¢« v o o ¢ o o a o o o o o s o o o o o o o o o 11-48
11.16.7 End of Blocks and Beginning and End of Functions 11-48
11.16.8 Beginning of Blocks . . « « & ¢ ¢« ¢ 4 4 0 o 0 0 00 .. 11-48
11.16.9 Auxiliary Entry Declaration . . « « « « ¢ ¢ ¢ ¢« ¢ ¢« o & 11-51

1117 STRINGTABLE . . . ¢ ¢ i e e e e e e e o v o o o o oo oo 11-51
1118 ACCESSROUTINES . . . & ¢ ¢t v v o e e e e o o o o o o o 11-51
THELINKEDITOR . . & & v 4 ¢t o 6 6 o e e o o o o o o o oo oo 12-1
121 OVERVIEW . . L i i i i it e e et o o o s o o o o oo o 12-1
122 COMMANDILANGUAGE . . ¢ ¢ ¢ ¢t v v v v o o o o o o oo 12-1
' 12.2.1 Memory Configuration . . « « « o ¢ ¢ ¢ ¢ ¢« o o o« o 12-2
1222 SectiOn &« v v ¢ o v v e e e e e e e e e e e e e e e e 12-2

1223 AdAresses « v ¢ o v v 6 e b e e e e e e o e e e e e e 12-2

1224 Binding . ¢ ¢ ¢ v vt vttt e e e e e e e e e e .. 12-2

1225 ObjectFile .+ v v v v v v o v v o v v v o e o o o 0 o 12-3

123 USINGTHELINK EDITOR . . & ¢ ¢ ¢ ¢ ¢ v v o o o s o o o o 12-3
12.4 THE LINK EDITOR COMMAND LANGUAGE. 12-5
12.4.1 EXDressionsS . o« o ¢ o o o o o o o o o s o o o o o o o o - 12-5
12.4.2 Assignment Statements . . « ¢« ¢ ¢ ¢ 4 4 e o e e o . .. 12-8
12.4.3 Specifying A Memory Configuration 12-9
12.4.4 Section Definition Directives . . « « ¢ ¢« ¢ ¢« ¢ « ¢ o . 12-10

-Xi-

Chapter 13

12.5 CHANGING THEENTRYPOINT . . « ¢ ¢ ¢ ¢ o ¢ o o o 0 o o 12-19
126 USEOF ARCHIVELIBRARIES+ ¢ ¢ o ¢ 0 o o o o o o 12-19
12.7 DEALING WITH HOLES IN PHYSICAL MEMORY 12-21
12.8 ALIOCATION ALGORITHM . . . ¢ ¢ ¢ ¢ o ¢ o o o o o o o« 12-22
12.9 INCREMENTAL LINK EDITING . . . « ¢ « o « « « e o e o . 12223
12.10 DSECT, COPY, NOLOAD, INFO AND OVERLAY SECTIONS . . . 12-24
12.11 OUTPUT FILEBLOCKING . ¢ ¢ « ¢ ¢ o ¢ o o o o « o o o © . 12-25
12.12 NONRELOCATABLEINPUT FILES . . ¢ ¢ « ¢ ¢ ¢ « o o = - 12-25
1213 FRRORMESSAGES . « ¢ ¢ ¢ ¢ ¢ o o s o o o o s o o o o o o 12-25
12.13.1 Corrupt Input Files e e e e e e e e e e 12-26
12.13.2 Errors During Qutput . « « ¢ « = o ¢ ¢ o o 0 0 00 o . 12-27
12.13.3 Internal EXTOIS « o« o o o o« o o o o o o o o o o o o o o 12-27
12.13.4 Allocation Errors . « « ¢« « o o ¢ ¢ & e e e e e e o o s 12-28
12.13.5 Misuse of Link Editor Directives « « « « « ¢ ¢ ¢ « o « » 12-28
12.13.6 Misuse of EXpressions . « « « « o ¢ o o ¢ o ¢ o o o o . 12-29
12.13.7 Misuse of Options . . « « « - « e e e e e e s e e e 12-30
12.13.8 Space Restraints . « « « o« o o o o o o o o o o o o o oo 12-31
12.13.9 Miscellaneous EITOIS &« o « o « o o o o ¢ o o o o o o o 12-31
MAKE ¢« & & o 6 e o o o o o s o o o o a o o o s o oo oo oo 13-1
131 INTRODUCTION . . ¢« ¢ = ¢ ¢ ¢ o o o o o o o o s o o o o o= 13-1
132 BASICFEATURES . . ¢ ¢ ¢ ¢ o o e o s o o o o s o o o o o 13-2
13.3 DESCRIPTION FILES AND SUBSTITUTIONS 135
1331 COMMENLS =« « o o o o o o« o o o o o s o o s o o o o o 13-5
13.32 Continuation Lines . « « « « o ¢ ¢ ¢ o o o o o o o o o 13-5
13.3.3 Macro Definitions . « « « « « « e e o s o s s s s e o e 13-6
1334 General FOrm . « « « o o o o o o o o e o o o o o o =« 13-6
13.3.5 Dependency Information . « ¢ « « o o ¢ ¢ o o 0 o oo 13-6
13.3.6 Executable Commands . .« « « « o o« o o o o o o o o o 13-7
13.3.7 Extensions of $%,$@,and $§< . « « « ¢« o o o 0 o o . . 137
13.3.8 Output Translations . « « « « « o ¢« c o o o o o o .. 137
134 RECURSIVEMAKEFILES ¢ ¢ ¢ ¢« ¢ ¢« ¢ o o o o o e o o o .. 138
13.4.1 Suffixes and TransformationRules . . . « » ¢« « « = « » . 138
13.4.2 Implicit Rules e e e s e e e e e e e e e e e 13-9
13.4.3 Archive Libraries . « « « « « o« o « « e e e e e e e e 13-10
13.5 SOURCE CODE CONTROL SYSTEM FILENAMES: THE TILDE . . 13-12
1351 The NullSuffiX . « ¢« o ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o« 13-13
1352 Include FileS .« ¢« o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o s o o o o o o o o 13-14
13.5.3 SCCS Makefiles « « o « o o ¢ o o o o o« e e e e e e 13-14
13.54 Dynamic Dependency Parameters . . « « « « « « « « - o« 13-14
136 COMMANDUSAGE .. .« « ¢« o « @ e e e e e s e e e 13-15
13.6.1 TheMake Command . « « « « o o = o o o o ¢ o o o o« 13-15

- xii -

®

Chapter 14

Chapter 15

13.7 SUGGESTIONS AND WARNINGSo v 13-17
13.8 INTERNALRULES ¢ 4 o i i e i it e e et e o e s 13-18
SOURCE CODE CONTROL SYSTEM(SCCS) . . +. « v v v v v v v .. 14-1
141 INTRODUCTION . . & ¢ 4 vt vt e e et et e oo o oo u 14-1
142 SCCSFORBEGINNERS ¢ ¢ v i v v vttt v o v w 14-1
14.2.1 Terminology . & ¢ v ¢ v v 4 o v v v b et e e 0. 14-1
14.2.2 Creating an SCCS File via Admin 14-2
14.2.3 RetrievingaFileviaGet 14-2
14.2.4 Recording ChangesviaDelta 14-3
14.2.5 Additional Information AboutGet. 14-4
142.6 TheHelpCommand . . « ¢« ¢ v v ¢ ¢ ¢ o o o o o « « & 14-5
143 DELTANUMBERING . « v ¢ ¢ ¢ ¢t 4 e v v e o o o o o s o o 14-5
144 SCCS COMMAND CONVENTIONS . « ¢ « ¢ ¢ o ¢ ¢ 0 v v v o . 14-7
1441 XfilesandZfiles. . « ¢ v v ¢ ¢ v vttt et e .. 14-8
14.42 Error Messages . « « « « « « « . e e e e e e e e e e 14-8
145 SCCSCOMMANDS . . & 4 v v v v v e v e e s e oo s s o 14-8
1451 TheGetCommand . . . « & v ¢ v v v v v v v o 0 v v 14-9
1452 TheDeltaCommand . . « & ¢« v ¢ ¢ v v 0 v v o v 0 s 14-18
14.5.3 The AdminCommand oo v 0o .. 14-20
14.54 Creationof SCCSFiles v v v v v v v v v v v o 14-20
1455 ThePrsCommand o0 v v v v v o .. 14-22
14.5.6 The SactCommand . . « « ¢ v ¢ ¢ v o ¢ v o o o o o« 14-24
145.7 TheHelpCommand « ¢ v v v v ¢t ¢ 0 o o v o 14-24
1458 The RmdelCommand 14-24
1459 TheCdcCommand ¢ v v v v v v v v oo 14-25
14.5.10 The What Command ¢ ¢ v v v v v o . 14-26
14.5.11 The Sccsdiff Command o0 0 0. .. 14-26
14.5.12 The CombCommand ¢ ¢ ¢ ¢ ¢ v v v o v o . . 14-27
14513 The ValCommand . . « +. ¢ & v ¢ v v v v v 00 0 v o & 14-27
14514 The VeCommand v ¢ v v v v v v v v v 0 v 14-28
146 SCCSFILES . . ¢ @ v i v v i i e et e et et e e e o e 14-28
1461 Protection « o v v v v v v v v i e bt e e e e e e e .. 14-28
1462 Formatting ¢« o v v v v v v v vt bt 14-29
1463 Auditing v vttt i i e e e e e e e .. 14-29
SDB—THE SYMBOLICDEBUGGER 15-1
151 INTRODUCTION . . ¢ ¢ v v v i v e et e e e s et o e e o 15-1
152 USINGSDB . . & o i i it i ettt ettt s oo a o e o 15-1
1521 PrintingaStack Trace . . « « « v v v v v ¢ v v o v o & 15-2
15.2.2 Examining Variables00 ... 15-2
15.2.3 Source File Display and Manipulation « 15-5
152.4 A Controlled Environment for Program Testing 15-6
15.2.5 Machine Language Debugging 15-8

- Xiii -

Chapter 16 LINT

16.1
16.2
16.3

152.6 Other Commands . « « « o« o« o o o o o o o o o s o o
1527 AnSAbSession . ¢ ¢ ¢« ¢ ¢ o e o o o o s s s 6 s 6 o e

ooooooooooooooooooooooooooooooo

INTRODUCTION . . ¢ ¢ v ¢ ¢ o e v o o o o o o o o o oo oo
USAGE . & & ¢t v it e e e e e e o e e o e oo oo s oo

LINTMESSAGETYPES . & ¢ & ¢ v ¢t 6 6 e v e e o v o oo o
16.3.1 Unused Variables and Functions « . ¢« « ¢« o . .
16.3.2 Set/Used Information . . « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o @
1633 Flowof Control . . = & ¢ ¢ ¢ ¢ v v o o ¢ o o o o o o &
1634 Function Values . « « « ¢ ¢« v ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o @
16.3.5 TypeChecking . . . « « « « « o & c et e s s e e e
16.3.6 TypeCasts e e e e e e e e e e e e
16.3.7 Nonportable Character Use . « « ¢ ¢ ¢ ¢« ¢« « ¢ ¢ ¢ ¢ o «
16.3.8 Assignmentsof LongstoInts
16.3.9 Strange Constructions . « « « ¢ ¢« ¢ ¢ o ¢ ¢« ¢ o o o ¢ o
16.31001dSyntax . « « ¢ ¢ ¢ ¢ o o o . e e s s e e e e e e
16.3.11 Pointer Alignment . « « « ¢ ¢ ¢ ¢ ¢ ¢ e 0 o 0 o o o . .
16.3.12 Multiple Uses and Side Effects « . . .

Chapter 17 THE GNX CLANGUAGE ANDCOMPILER. . . . « ¢« ¢ ¢ ¢ o ¢ - & .

17.1
17.2

17.3

174

17.5

17.6

INTRODUCTION« ¢ ¢ o o o & ©c o e e o e e e e .

RECENTCHANGESTOC o o o o e e e e .
17.2.1 Structure Assignment T e e e e e e
1722 Enumeration Type « « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o @ ..

DEVIATIONS FROM THE C PROGRAMMING LANGUAGE . . .
17.31 StructureHandling ¢ ¢« o ¢ ¢ ¢ 0 o0 o oo .
1732 VoidDataType « « « ¢« ¢ ¢ ¢ ¢ o ¢ o o & e e e e e e e
17.3.3 Predefined Names . « « « ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ 0 o o o .
1734 BitfieldS . « ¢ v ¢ ¢ ¢ ¢ ¢ o o e e o e e e e e e e e
17.3.5 Register Variables . . « . « ¢ o ¢ ¢ 0o o v 0 o o oo ..
17.3.6 Clarification of Assignment Ops . « ¢« ¢« « ¢ ¢ ¢ ¢ = o « &

GNX CCOMPILEROPERATION . . . ¢ ¢ ¢ ¢t e 0 e v o o o o @
17.4.1 StorageforCtypes. « « « « « « « « & e s e e s e .
1742 Compiler options . « « « « « « o « o o « e e e e e e

GNX C LANGUAGE CALLING CONVENTIONS.
17.5.1 CallingConventions « . « « « ¢ ¢ ¢« o o ¢ ¢« o o o o o »

EMBEDDING ASSEMBLY LANGUAGE CODE IN OPTIMIZED
CPROGRAMS ¢t ¢ v v v v o o o oo
17.6.1 Guidelines For Optimization« e e e

Appendix A INDEXTOUTILITIES & ¢ ¢ ¢ ¢ ¢ o e o 0 o o o o o NN
Appendix B LINK EDITOR ERROR MESSAGES e e e e
Appendix C GENIX V.3OPERATINGSYSTEM« . v o 0o o0 0 v . .

- Xiv -

@

O

O

C1l INTRODUCTION . . v v v v v bt et e e o e e o s o e e C1

C2 DEFINITIONS @ ¢t i i it it et et vt e e e e C1
FIGURES
Figure 2-1. Using Command Line Argumentsto Set Flags 2-10
Figure 2-2. Using argvl[n] Pointers to Passa Filename . . « « « « « . « 2-11
Figure 2-3. Manual Page for Gets(3S) . . « v v v v v v v v v v v v v v o .. 2-18
Figure 2-4. How Gets Is Used in a Program0.00... 2-20
Figure 2-5. AVersionof Stdioh, 2-21
Figure 2-6. ProcessStatus ¢ . 0 v i ittt e e e e e e e e e e 2-28
Figure 2-7. Exampleof Fork 0 ittt 2-31
Figure 2-8. Exampleof aPopenPipe ¢ ¢ v ¢ v v v v o v .. . o . 2-33
Figure 2-9. Signal Numbers Defined in /usr/ include/sys/signal.h 2-35
Figure 2-10. Source Code for Sample Program . . « « « ¢ ¢ v v v 0 o o o v . . 2-36
Figure 2-11. Cflow1 Output, NoOptions « + « « ¢ « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o « 2-41
Figure 2-12. Cflow Output, Using -t Option . « « « ¢ ¢ v v ¢ ¢ v v ¢ o o o o & 2-42
Figure 2-13. Cflow Output, Using -ix Option . «. « v v ¢ v ¢ o ¢ ¢ 0 v v v . . 2-43
Figure 2-14. Cflow Output, Using -r and iXx Options . « « « « v ¢ ¢ v v o « . . 2-44
Figure 2-15. Ctrace OUtput . . . « ¢ ¢ ¢ v 4 o o o o o v o o o o o o v o v 2-45
Figure 2-16. Cxref Output, Using <Option « « « « ¢« v ¢ ¢ ¢ v o . . e e e 2-49
Figure 2-17. LiNtOULPUL & v v v v v o v v v e e e e e e e e e ee e e e e 254
Figure 2-18. Prof Output @ e e e e e e e e e e e e 2-55
Figure 2-19. Make Description File . « « v v v v v o v v v v v o v v v v v u . 2-58
Figure 2-20. Nm Output, with fOption . + « & ¢ ¢ v ¢ 4 ¢ 0 4 v v o o v v 2-60
Figure 3-1. The Fentlh Header File & v v v v v v 0 v v vt 0 v v o 3-12
Figure 4-1. Sample Input File, CountrieS « « ¢« « « ¢ o ¢ ¢ o o o « o o o o » 4-18
Figure 5-1. Creation and Use of a Lexical Analyzer withLex 5-2
Figure 8-1. A.out Files Created Using Archive and Shared Libraries 8-6
Figure 8-2. Processes Using an Archive and a Shared Library 8-6
Figure 8-3. A Branch Table in a Shared Library 8-9
Figure 8-4. Imported Symbols in a Shared Library . . « = « ¢« v v v ¢ v « . . 8-25
Figure 9-1. Ipc_perm Data Structure . . . & ¢ ¢ ¢ v v v bt 4 e e 0. 0. 9-4
Figure 9-2. Msgget() System CallExample « « « « v v v v o v o v v v v o .. 9-11

Xv

Figure .9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 9-10.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 11-10.
Figure 11-11.
Figure 11-12.
Figure 11-13.
Figure 11-14.
Figure 11-15.
Figure 11-16.
Figure 13-1.

Msgetl() System CallExample « « « v ¢ v ¢ v o v o o v 0 o o o &
Msgop() System Call Example + « « o ¢ o ¢ o o o o o v o v o o &
Semget() System Call EXample . « « v v ¢« v v o o o 0 0 o 0 o o o
Semctl() System Call Example e e e e e e
Semop(2) System CallExample . . « « v v ¢ ¢ ¢ ¢ o o o o « o &«

. Shmget(2) System CallExample « « « « v ¢ v o v o v v v o o o

Shmctl(2) System CallExample . « « « « « o o ¢ ¢ ¢ o o o o o o
Shmop() System Call Example e e e e e e e e
A Simple Curses Program . . ¢« « ¢« o ¢ ¢« ¢ ¢ ¢ o o e o o o o o
A Shell Script Using Terminfo Routines
The Purposes of initscr(), refresh(), and endwin() in a Program . . .
The Relationship between Stdscr and a Terminal Screen

Multiple Windows and Pads Mapped to a Terminal Screen ‘

The Relationship Between a Window and a Terminal Screen
Sending a Message to Several Terminals o s v e e e
Typical Framework of a Terminfo Program
File Header Declaration e ee o e e e s e e e e
Aouthdr Declaration . « « ¢ ¢ ¢ ¢ ¢ o o ¢ v o 0 e e o o o o o
Section Header Declaration . . « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o &
Series 32000 Bit Mask Definitions . . « « « ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o &
Relocation Entry Declaration . . .« « ¢ ¢ ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ o @ ..
Line Number Grouping . « « « « ¢ ¢« ¢« ¢ ¢ o o « ¢ ¢ o o o ..
Line Number Entry Declaration
COFF Global Symbol Table « v ¢ ¢« ¢« ¢ ¢ ¢ ¢ c o ¢ o o ¢ o o o
Special Symbols (bband €b) e e
Nested BIOCKS « ¢ ¢ ¢ ¢ ¢ o ¢ o ¢« e o o o o o o o o o oo oo
Example of the Symbol Table e e e e
Symbols for FUNCtions . « o ¢ o ¢ &« o o o o ¢ o o o o o o o o »
The Special Symbol .Target . . « ¢« ¢« ¢« ¢ ¢« ¢ ¢ ¢ ¢ o ¢ v v o o
Symbol Table Entry Declaration . . « « ¢ ¢« ¢« ¢« ¢ ¢« ¢« o ¢ o o « &
Auxiliary Symbol Table Entry . . . & ¢ ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o &
StringTable . « & & & ¢ ¢ ¢ v 0 0 0 0 0 ettt et e e e ..

Summary of Default TransformationPath

- XVi -

9-16
9-24
9-41
9-47
9-59
9-72
9-78
9-87
10-3
10-4
10-7
10-11
10-12
10-33
10-40
10-41
11-8
11-13
11-16
11-19
11-20
11-21
11-21
11-23
11-25
11-25
11-26
11-28
11-28
11-43
11-52
11-54
13-10

Figure 13-2.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4,
Figure 15-1.

TABLES

TABLE 2-1.
TABLE 2-2.
TABLE 2-3.
TABLE 2-4.
TABLE 2-5.
TABLE 3-1.
TABLE 4-1.
TABLE 4-2.
TABLE 4-3.
TABLE 4-4.
TABLE 4-5.
TABLE 4-6.

TABLE 4-7.
TABLE 4-8.
TABLE 4-9.

TABLE 4-10.
TABLE 8-1.
TABLE 9-1.
TABLE 9-2.
TABLE 9-3.
TABLE 9-4.
TABLE 9-5.
TABLE 9-6.

Extended Branching Concept . + « . v v v v v v ¢t 0 o 0 o v o .
Determinationof New SIDo o0 v v v v v v .
Exampleof SdbUsage 0000

' C LANGUAGE STANDARD I/0 SUBROUTINES

STRINGOPERATIONS . . .« ¢ ¢ ¢ i i it i et et e e e
CLASSIFYING ASCII CHARACTER-CODED INTEGER VALUES . .
CONVERSION FUNCTIONS AND MACROS v v v v o . .
ENVIRONMENT AND STATUS SYSTEM CALLIS
OBJECT FILE LIBRARY FUNCTIONS« v v v o ..
AWKEKEYWORDS . . . & ¢ @ v i i ittt e et aa e e e w
AWK ASSIGNMENT OPERATORS ¢ v v v v v o ..
AWK ARITHMETICOPERATORS ¢ v e v v v v o
AWK RELATIONALOPERATORS ¢ v v v v o .
AWK ILOGICALOPERATORS . . . & & ¢ v v it v v v e v e v

OPERATORS FOR MATCHING REGULAR EXPRESSIONS IN
N

NUMERIC VALUES FOR STRING CONSTANTS
STRING VALUES FOR STRING CONSTANTS

BUILT-IN FUNCTIONS FOR ARITHMETIC AND STRING
OPERATIONS . . . & i i i it e et et e e e e s e e e e

SEGMENT ASSIGNMENTS FOR A SERIES 32000 COMPUTER . . .
OPERATION PERMISSIONSCODES v v v v v v v ..
CONTROL COMMANDS (FLAGS) + « « v ¢ ¢ v v v v v v v v\
OPERATION PERMISSIONSCODES . . « . ¢ v v v v v v v v o
CONTROL COMMANDS (FLAGS) + « « ¢ v v v v v v v v v v o
SHARED MEMORY STATE INFORMATION
OPERATION PERMISSIONSCODES v ¢ v v v v v v o .

- XVIii -

2-13
2-15
2-16
2-17
2-27
318
4-4
4-5
4-6
4-7
4-8

4-8
4-10
4-11

412
413
8-11

9-7

9-8
9-38
9-39
9-66
9-69

TABLE 9-7.
TABLE 10-1.
TABLE 11-1.
TABLE 11-2.
TABLE 11-3.
TABLE 11-4. .
TABLE 11-5.
TABLE 11-6.
TABLE 11-7.
TABLE 11-8.
TABLE 11-9.
TABLE 11-10.
TABLE 11-11.
TABLE 11-12.
TABLE 11-13.

'TABLE 11-14.
TABLE 11-15.
TABLE 11-16.
TABLE 11-17.
TABLE 11-18.
TABLE 11-19.
TABLE 11-20.
TABLE 11-21.
TABLE 11-22.
TABLE 11-23.
TABLE 11-24.
TABLE 11-25.
TABLE 11-26.
TABLE 11-27.
TABLE 11-28.
TABLE 11-29.
TABLE 11-30.

TABLE 11-31.

CONTROL COMMANDS (FLAGS) = « = = « o ¢ o o o o o o o o«
INPUT OPTION SETTINGS FOR CURSES PROGRAMS
OBJECT FILE FORMAT
FILE HEADER CONTENTS
MAGICNUMBERS « « v v v e e e e e e e o e e o e e aneen
FILE HEADER FLAGS .
OPTIONAL HEADER CONTENTS (SERIES 32000 PROCESSORS) . .
NSC MAGIC NUMBERS
OPTIONAL HEADER FLAGS
SECTION HEADER CONTENTS
SECTION HEADER FLAGS
RELOCATION SECTION CONTENTS
SPECIAL SYMBOLS IN THE SYMBOL TABLE11-24
SYMBOL TABLE ENTRY FORMAT
NAME FIELD
STORAGE CLASSES
STORAGE CLASS FOR SPECIAL SYMBOLS
RESTRICTED STORAGE CLASSES
STORAGE CLASS AND VALUE
SECTION NUMBER
SECTION NUMBER AND STORAGE CLASS

oooooooooooooooooooo

oooooooooooooooo

ooooooooo
oooooooooooooooooooooo
ooooooooooo

DERIVED TYPES . &+ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o s s o o o o o oo
TYPE ENTRIES BY STORAGE CLASS
AUXILIARY SYMBOL TABLE ENTRIES
AUXILARY ENTRY FORMAT FOR FILE NAMES
AUXILIARY ENTRY FORMAT FOR SECTIONS

AUXILIARY ENTRY FORMAT FOR TAG NAMES
AUXILIARY ENTRY FORMAT FOR END OF STRUCTURES
AUXILIARY ENTRY FORMAT FOR FUNCTIONS
AUXILIARY ENTRY FORMAT FOR ARRAYS

AUXILIARY ENTRY FORMAT FOR END OF BLOCKS, AND
BEGINNING AND ENDOFFUNCTIONS ¢ ¢ ¢ ¢ ¢ o ¢«

AUXILIARY ENTRY FORMAT FOR BEGINNING OF BLOCK . . .

- XViii -

TABLE 11-32. AUXILIARY ENTRY FORMAT FOR STRUCTURES, UNIONS,

ANDNUMERATIONS . . . ¢ ¢ v v v i i it e et e et e 11-50
TABLE 12-1. SYMBOLS AND FUNCTIONS OF OPERATORS 12-6
TABLE 12-2. SYNTAX DIAGRAMFOR INPUT DIRECTIVES 12-33
TABLEB-1. ERRORMESSAGES. ¢ ¢ i i i ittt e e e e e B-1
TABLE C-1. GENIX V.3 SYSTEM DEFAULTSo v v v v v .. C-2

GLOSSARY

INDEX

- Xix -

Chapter 1
INTRODUCTION

The manual provides information about programming in a GENIX V.3™ system environment.
It does not attempt to teach you how to write programs. Rather, it is intended to supplement
texts on programming languages by concentrating on the other elements that are part of getting
programs into operation.

1.1 ORGANIZATION
The material is organized into seventeen chapters, as follows:
o Chapter 1 — Introduction

Identifies the special features of the GENIX V.3 system that make up the programming
environment: the concept of building blocks, pipes, ‘special files, shell programming, etc.
As a framework for the material that follows, three different levels of programming in a
GENIX V.3 system are defined: single-user, applications, and systems programming.

e Chapter 2 — Programming Basics
Describes the most fundamental utilities needed to get programs running.
o Chapter 3 — Application Programming

Enlarges on many of the topics covered in the previous chapter with particular emphasis
on how things change as the project grows bigger. Describes tools for keeping
programming projects organized.

o Chapters 4 through 17 — Support Tools, Descriptions, and Tutorials
Includes detailed information about the use of many of the GENIX V.3 system tools.

This manual also contains three appendices, a glossary and an index. Appendix A shows the
available command packages for the Series 32000° Computer. Appendix B lists link editor
error messages and Appendix C describes the GENIX V.3 operating system.

1.2 GENIX V.3 SYSTEM PHILOSOPHY SIMPLY STATED

For as long as you are writing programs on a GENIX V.3 system you should keep this motto
hanging on your wall:

Build on the work of others

1-1

Unlike computer environments where each new project is like starting with a blank canvas, on
a GENIX V.3 system a good percentage of any programming effort is lying there in bins, and
Ibins, and /usr/bins, not to mention etc, waiting to be used.

The features of the GENIX V.3 system (pipes, processes, and the file system) contribute to this
reusability, as does the history of sharing and contributing that extends back to 1969. You risk
missing the essential nature of the GENIX V.3 system if you don’t put this to work.

1.3 THE C CONNECTION

The GENIX V.3 system supports manyAprogramming languages, and C compilers are available on
many different operating systems. Nevertheless, the relationship between the GENIX V.3
operating system and C has always been and remains very close. Most of the code in the GENIX
V.3 operating system is C, and over the years many organizations using the GENIX V.3 system
have come to use C for an increasing portion of their application code. Thus, while this guide is
intended to be useful to you no matter what language(s) you are using, you will find that,
unless there is a specific language-dependent point to be made, the examples assume you are
programming in C.

1.4 HARDWARE/SOFTWARE DEPENDENCIES

The text reflects the way things work on a Series 32000 Computer running the GENIX V.3
System. If you find commands that work a little differently in your GENIX V.3 system
environment, it may be because you are running under a different release of the software. If
some commands just don’t seem to exist at all, they may be members of packages not installed
on your system. Appendix A describes the command packages available on the Series 32000
GENIX V.3 Computer. If you do find yourself trying to execute a non-existent command, check
Appendix A, then talk to the administrators of your system.

1.5 GENIX V.3 SYSTEM TOOLS AND WHERE YOU CAN READ ABOUT THEM

The term “GENIX V.3 system tools” can stand some clarification. In the narrowest sense, it
means an existing piece of software used as a component in a new task. In a broader context,
the term is often used to refer to elements of the GENIX V.3 system that might also be called
features, utilities, programs, filters, commands, languages, functions, and so on. It gets confusing
because any of the things that might be called by one or more of these names can be, and often
are, used in the narrow way as part of the solution to a programming problem.

1.5.1 Tools Covered and Not Covered in this Guide

The Programmer’s Guide is about tools used in the process of creating programs in a GENIX V.3
system environment, so let’s take a minute to talk about which tools we mean, which ones are
not going to be covered in this book, and where you might find information about those not
covered here. Actually, the subject of things not covered in this guide might be even more
important to you than the things that are. We couldn’t possibly cover everything you ever
need to know about GENIX V.3 system tools in this one volume.

Tools not covered in this text:
e the login procedure
e GENIX V.3 system editors and how to use them
e how the file system is organized and how you move around in it
e shell programming

Information about these subjects can be found in the User's Guide and a number of
commercially available texts.

Tools covered here can be classified as follows:
e utilities for getting programs running

e utilities for organizing sof tware development projects

speéialized languages

debugging and analysis tools

compiled language components that are not part of the language syntax, for example,
standard libraries, systems calls, and functions

1.5.2 The Shell as a Prototyping Tool

Any time you log in to a GENIX V.3 system machine you are using the shell. The shell is the
interactive command interpreter that stands between you and the GENIX V.3 system kernel, but
that’s only part of the story. Because of its ability to start processes, direct the flow of control,
field interrupts and redirect input and output it is a full-fledged programming language.
Programs that use these capabilities are known as shell procedures or shell scripts.

Much innovative use of the shell involves stringing together commands to be run under the
control of a shell script. The dozens and dozens of commands that can be used in this way are
documented in the User's Re ference Manual. Time spent with the User's Re ference Manual
can be rewarding. Look through it when you are trying to find a command with just the right
option to handle a knotty programming problem. The more familiar you become with the
commands described in the manual pages the more you will be able to take full advantage of
the GENIX V.3 system environment.

1-3

It is not our purpose here to instruct you in shell programming. What we want to stress here is
the important part that shell procedures can play in developing prototypes of full-scale
applications. While understanding all the nuances of shell programming can be a fairly
complex task, getting a shell procedure up and running is far less time-consuming than writing,
compiling and debugging compiled code.

This ability to get a program into production quickly is what makes the shell a valuable tool
for program development. Shell programming allows you to “build on the work of others” to
the greatest possible degree, since it allows you to piece together major components simply and
efficiently. Many times even large applications can be done using shell procedures. Even if the
application is initially developed as a prototype system for testing purposes rather than being
put into production, many months of work can be saved.

With a prototype for testing, the range of possible user errors can be determined—something
that is not always easy to plan out when an application is being designed. The method of
dealing with strange user input can be worked out inexpensively, avoiding large re-coding
problems.

A common occurrence in the GENIX V.3 system environment is to find that an available GENIX
V.3 system tool can accomplish with a couple of lines of instructions what might take a page
and a half of compiled code. Shell procedures can intermix compiled modules and regular
GENIX V.3 system commands to let you take advantage of work that has gone before.

1.6 THREE PROGRAMMING ENVIRONMENTS

We distinguish among three programming environments to emphasize that the information
needs and the way in which GENIX V.3 system tools are used differ from one environment to
another. We do not intend to imply a hierarchy of skill or experience. Highly-skilled
programmers with years of experience can be found in the “single-user” category, and relative
newcomers can be members of an application development or systems programming team.

1.6.1 Single—User Programmer

Programmers in this environment are writing programs only to ease the performance of their
primary job. The resulting programs might well be added to the stock of programs available to
the community in which the programmer works. This is similar to the atmosphere in which
the GENIX V.3 system thrived; someone develops a useful tool and shares it with the rest of the
organization. Single-user programmers may not have externally imposed requirements, or co-
authors, or project management concerns. The programming task itself drives the coding very
directly. One advantage of a timesharing system such as GENIX V.3 is that people with
programming skills can be set free to work on their own without having to go through formal
project approval channels and perhaps wait for months for a programming department to solve
their problems.

O

Single-user programmers need to know how to:
' e select an appropriate language
e compile and run programs
e use system libraries
‘e analyze programs
¢ debug programs
e keep track of program versions

Most of the information to perform‘ these functions at the single-user level can be found in
Chapter 2.

1.7 APPLICATION PROGRAMMING

Programmers working in this environment are developing systems for the benefit of other,
non-programming users. Most large commercial computer applications still involve a team of
applications development programmers. They may be employees of the end-user organization
or they may work for a software development firm. Some of the people working in this
environment may be more in the project management area than working programmers.

Information needs of people in this environment include all the topics in Chapter 2, plus
additional information on:

e software control systems

e file and record locking

e communication between processes
e shared memory

e advanced debugging techniques

These topics are discussed in Chapter 3.

1.7.1 Systems Programmers

These are programmers engaged in writing software tools that are part of, or closely related to
the operating system itself. The project may involve writing a new device driver, a data base
management system or an enhancement to the GENIX V.3 system Kkernel. In addition to
knowing their way around the operating system source code and how to make changes and
enhancements to it, they need to be thoroughly familiar with all the topics covered in Chapters
2 and 3.

1-5

1.8 DOCUMENTATION CONVENTIONS

Whenever the text includes examples of output from the computer and/or commands entered
by you, we follow the standard notation scheme that is common throughout GENIX V.3 system
documentation:

e Commands that you type in from your terminal are shown in bold type.

e Text that is printed on your terminal by the computer is shown in constant width (THIS
IS WRONG FOR NSC, JAS) type. Constant width type is also used for code samples
because it'allows the most accurate representation of spacing. Spacing is often a matter of
coding style, but is sometimes critical.

e Comments added to a display to show that part of the display has been omitted are shown
in italic type and are indented to separate them from the text that represents computer
output or input. Comments that explain the input or output are shown in the same type
font as the rest of the display.

Italics are also used to show substitutable values, such as, filename, when the format of a
command is shown.

o There is an implied RETURN at the end of each command and menu response you enter.
Where you may be expected to enter only a RETURN (as in the case where you are
accepting a menu default), the symbol <CR> is used.

e In cases where you are expected to enter a control character, it is shown as, for example,
CTRL-D. This means that you press the d key on your keyboard while holding down
the CTRL key.

e The dollar sign, $, and pound sign, #, symbols are the standard default prompt signs for
an ordinary user and root respectively. § means you are logged in as an o:dinary user. #
means you are logged in as root.

e When the # prompt is used in an example, it means the command illustrated may be used
only by root.

1.8.1 Command References

When commands are mentioned in a section of the text for the first time, a reference to the
manual section where the command is formally described is included in parentheses:
command(section). The numbered sections are located in the following manuals:

Section (1) GENIX V.3 User's Re ference Manual
Sections (1, 1M), (7, (8) GENIX V.3 Administrator’s Re ference Manual
Sections (1), (2), (3), (4), (5) GENIX V.3 Programmer’s Reference Manual

O

1.8.2 Information in the Examples

While every effort has been made to present displays of information just as they appear on
your terminal, it is possible that your system may produce slightly different output. Some
displays depend on a particular machine configuration that may differ from yours. Changes
between releases of the GENIX V.3 system software may cause small differences in what appears
on your terminal.

Where complete code samples are shown, we have tried to make sure they compile and work as
represented. Where code fragments are shown, while we can’t say that they have been
compiled, we have attempted to maintain the same standards of coding accuracy for them.

1.9 SUMMARY

In this overview chapter we have described what is and is not to be found in the other chapters
of this guide to help programmers. We have also suggested that in many cases programming
problems may be easily solved by taking advantage of the GENIX V.3 system interactive
command interpreter known as the shell. Finally, we identified three programming
environments in the hope that it will help orient the reader to the organization of the text in
the remaining chapters.

1-7

Chapter 2
PROGRAMMING BASICS

2.1 INTRODUCTION

The information in this chapter is for anyone just learning to write programs to run in a GENIX
V.3 system environment. In Chapter 1 we identified one group of GENIX V.3 system users as
single-user programmers. People in that category, particularly those who are not deeply
interested in programming, may find this chapter (plus related reference manuals) tells them as
much as they need to know about.coding and running programs on a GENIX V.3 system
computer.

Programmers whose interest does run deeper, who are part of an application development
project, or who are producing programs on one GENIX V.3 system computer that are being
ported to another, should view this chapter as a starter package.

2.2 CHOOSING A PROGRAMMING LANGUAGE

How do you decide which programming language to use in a given situation? One answer
could be, “I always code in HAIRBOL, because that’s the language I know best.” Actually, in
some circumstances that’s a legitimate answer. But assuming more than one programming
language is available to you, that different programming languages have their strengths and
weaknesses, and assuming that once you’ve learned to use one programming language it becomes
relatively easy to learn to use another, you might approach the problem of language selection
by asking yourself questions like the following:

e What is the nature of the task this program is to do?

Does the task call for the development of a complex algorithm, or is this a simple
procedure that has to be done on a lot of records?

e Does the programming task have many separate parts?

Can the program be subdivided into separately compilable functions, or is it one
module?

e How soon does the program have to be available?

Is it needed right now, or do I have enough time to work out the most efficient process
possible?

What is the scope of its use?

Am I the only person who will use this program, or is it going to be distributed to the
whole world?

Is there a possibility the program will be ported to other systems?

e What is the life-expectancy of the program?

2-1

Is it going to be used just a few times, or will it still be going strong five years from
- now?

2.2.1 Supported Languages in a GENIX V.3 System Environment

By “supported languages” we mean those offered by National Semiconductor for use on a
Series 32000 Computer running the GENIX V.3 System Release. Since these are separately
purchasable items, not all of them will necessarily be installed on your machine. On the other
hand, you may have languages available on your machine that came from another source and
are not mentioned in this discussion. Be that as it may, in this section and the one to follow we
give brief descriptions of the nature of a) six full-scale programming languages, and b) a
number of special purpose languages. ‘

2.2.1.1 CLanguage

C is intimately associated with the GENIX V.3 system since it was originally developed for use
in recoding the UNIX system kernel. If you need to use a lot of GENIX V.3 system function calls
for low-level 1/0, memory or device management, or inter-process communication, C language
is a logical first choice. Most programs, however, don’t require such direct interfaces with the
operating system so the decision to choose C might better be based on one or more of the
following characteristics:

-+ e a variety of data types: character, integer, long integer, float, and double
o low level constructs (most of the GENIX V.3 system kernel is written in C)
e derived data.types such as arrays, functions, pointers, structures and unions
e multi-dimensional arrays
o scaled pointers, and the ability to do pointer arithmetic
e bit-wise operators -

e a variety of flow-of- -control statements: if, if-else, switch, while, do-while, and for

a high degree of portability

Cisa language that lends itself readily to structured programming. It is natural in C to think
in terms of functions. The next logical step is to view each function as a separately compilable
unit. This approach (coding a program in small pieces) eases the job of making changes and/or
improvements. If this begins to sound like the GENIX V.3 system philosophy of building new
programs from existing tools, it’s not just coincidence. As you create functions for one program
you will surely find that many can be picked up, or quickly revised, for another program.

A difficulty with C is that it takes a fairly concentrated use of the language over a period of
several months to reach your full potential as a C programmer. If you are a casual
programmer, you might make life easier for yourself if you choose a less demanding language.

O

2.2.1.2 FORTRAN

The oldest of the high-level programming languages, FORTRAN is still highly prized for its
variety of mathematical functions. If you are writing a program for statistical analysis or
other scientific applications, FORTRAN is a good choice. An original design objective was to
produce a language with good operating efficiency. This has been achieved at the expense of
some flexibility in the area of type definition and data abstraction. There is, for example, only
a single form of the iteration statement. FORTRAN also requires using a somewhat rigid
format for input of lines of source code. This shortcoming may be overcome by using one of
the GENIX V.3 system tools designed to make FORTRAN more flexible.

2.2.1.3 Pascal

Originally designed as a teaching tool for block structured programming, Pascal has gained
quite a wide acceptance because of its straightforward style. Pascal is highly structured and
allows system level calls (characteristics it shares with C). Since the intent of the developers,
however, was to produce a language to teach people about programming it is perhaps best suited
to small projects. Among its inconveniences are its lack of facilities for specifying initial
values for variables and limited file processing capability.

2.2.1.4 Assembly Language

The closest approach to machine language, assembly language is specific to the particular
computer on which your program is to run. High-level languages are translated into the
assembly language for a specific processor as one step of the compilation. The most common
need to work in assembly language arises when you want to do some task that is not within
the scope of a high-level language. Since assembly language is machine-specific, programs
written in it are not portable.

2.2.2 Special Purpose Languages

In addition to the above formal programming languages, the GENIX V.3 system environment
frequently offers one or more of the special purpose languages listed below.

NOTE: Since GENIX V.3 system utilities and commands are packaged in functional
groupings, it is possible that not all the facilities mentioned will be
available on all systems.

2.2.2.1 Awk

Awk (its name is an acronym constructed from the initials of its developers) scans an input file
for lines that match pattern(s) described in a specification file. On finding a line that matches a
pattern, awk performs actions also described in the specification. It is not uncommon that an
awk program can be written in a couple of lines to do functions that would take a couple of
pages to describe in a programming language like FORTRAN or C. For example, consider a case
where you have a set of records that consist of a key field and a second field that represents a
quantity. You have sorted the records by the key field, and you now want to add the
quantities for records with duplicate keys and output a file in which no keys are duplicated.
The pseudo-code for such a program might look like this:

Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}

At EOF, write out the last record from the hold area.
An awk program to accomplish this task would look like this:

{ qtyl$1]+=$2 }
END { for (key in qty) print key, qty[key] }

This illustrates only one characteristic of awk; its ability to work with associative arrays.
With awk, the input file does not have to be sorted, which is a requirement of the pseudo-
program.

2.2.2.2 Lex

Lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical analyzer is
interested in the vocabulary of a language rather than its grammar, which is a system of rules
defining the structure of a language. Lex can produce C language subroutines that recognize
regular expressions specified by the user, take some action when a regular expression is
recognized and pass the output stream on to the next program.

2.2.2.3 Yacc

Yacc (Yet Another Compiler Compiler) is a tool for describing an input language to a computer
program. Yacc produces a C language subroutine that parses an input stream according to rules
laid down in a specification file. The yacc specification file establishes a set of grammar rules
together with actions to be taken when tokens in the input match the rules. Lex may be used
with yacc to control the input process and pass tokens to the parser that applies the grammar
rules.

2.2.2.4 M4

M4 is a macro processor that can be used as a preprocessor for assembly language, and C
programs. It is described in Section (1) of the Programmer’s Re ference Manual.

2.2.2.5 Bc and Dc

Bc enables you to use a computer terminal as you would a programmable calculator. You can
edit a file of mathematical computations and call bc to execute them. The bc program uses dc.
You can use dc directly, if you want, but it takes a little getting used to since it works with
reverse Polish notation. That means you enter numbers into a stack followed by the operator.
Bc and dc are described in Section (1) of the User’s Re ference Manual.

2.2.2.6 Curses

Actually a library of C functions, curses is included in this list because the set of functions
just about amounts to a sub-language for dealing with terminal screens. If you are writing
programs that include interactive user screens, you will want to become familiar with this
group of functions.

In addition to all the foregoing, don’t overlook the possibility of using shell procedures.

2.3 AFTER YOUR CODE IS WRITTEN

The last two steps in most compilation systems in the GENIX V.3 system environment are the
assembler and the link editor. The compilation system produces assembly language code. The
assembler translates that code into the machine language of the computer the program is to run
on. The link editor resolves all undefined references and makes the object module executable.
With most languages on the GENIX V.3 system the assembler and link editor produce files in
what is known as the Common Object File Format (COFF). A common format makes it easier
for utilities that depend on information in the object file to work on different machines
running different versions of the GENIX V.3 system.

In the Common Object File Format an object file contains:
e a file header
e optional secondary header

a table of section headers

data corresponding to the section header(s)

relocation information

e line numbers
e a symbol table

e a string table

2-5

An object file is made up of sections. Usually, there are at least two: .text, and .data. Some
object files contain a section called .bss (.bss is an assembly language pseudo-op that originally
stood for “block started by symbol”). .Bss, when present, holds uninitialized data. Options of
the compilers cause different items of information to be included in the Common Object File
Format. For example, compiling a program with the -g option adds line numbers and other
symbolic information that is needed for the sdb (Symbolic Debugger) command to be fully
effective. You can spend many years programming without having to worry too much about
the contents and organization of the Common Object File Format, so we are not going into any
further depth.of detail at this point. Detailed information is available in Chapter 11 of this
guide.

2.3.1 Compiling and Link Editing
The command used for compiling depends on the language used;
e for C programs, cc both compiles and link edits
~o for FORTRAN programs, £77 both compiles and link edits

2.3.1.1 Compiling C Programs

To use the C compilation system you must have your source code in a file with a filename that
ends in the characters .c, as in mycode.c. The command to invoke the compiler is:

cc mycode.c

If the compilation is successful the process proceeds through the link edit stage and the result
will be an executable file by the name of a.out.

Several options to the cc command are available to control its operation. The most used options
are:

-c causes the compilation system to suppress the link edit phase. This produces
an object file (mycode.o) that can be link edited at a later time with a cc
command without the -c option.

-g ‘ causes the compilation system to generate special information about
variables and language statements used by the symbolic debugger sdb. If
you are going through the stage of debugging your program, use this option.

-0 causes the inclusion of an additional optimization phase. This option is
logically incompatible with the -g option. You would normally use -O
after the program has been debugged, to reduce the size of the object file and
increase execution speed.

-p causes the compilation system to produce code that works in conjunction
with the prof(1) command to produce a runtime profile of where the
program is spending its time. Useful in identifying which routines are
candidates for improved code.

-ooutfile tells cc to tell the link editor to use the specified name for the executable file,
rather than the default a.out.

O

Other options can be used with cc. Check the Programmer’s Re ference Manual.

If you enter the cc command using a file name that ends in .s, the compilation system treats it
as assembly language source code and bypasses all the steps ahead of the assembly step.

2.3.1.2 Compiling FORTRAN Programs

The £77 command invokes the FORTRAN compilation system. The operation of the command
is similar to that of the cc command, except the source code file(s) must have a .f suffix. The
£77 command compiles your source code and calls in the link editor to produce an executable
file whose name is a.out.

The following command line options have the same meaning as they do for the cc command:

-c, -p, -0, -g, and -o out file

2.3.1.3 Compiler Diagnostic Messages

The C compiler generates error messages for statements that don’t compile. The messages are
generally quite understandable, but in common with most language compilers they sometimes
point several statements beyond where the actual error occurred. For example, if you
inadvertently put an extra ; at the end of an if statement, a subsequent else will be flagged as a
syntax error. In the case where a block of several statements follows the if, the line number of
the syntax error caused by the else will start you looking for the error well past where it is.
Unbalanced curly braces, { }, are another common producer of syntax errors.

2.3.1.4 Link Editing

The 1d command invokes the link editor directly. The typical user, however, seldom invokes
1d directly. A more common practice is to use a language compilation control command (such
as cc) that invokes 1d. The link editor combines several object files into one, performs
relocation, resolves external symbols, incorporates startup routines, and supports symbol table
information used by sdb. You may, of course, start with a single object file rather than several.
The resulting executable module is left in a file named a.out.

Any file named on the 1d command line that is not an object file (typically, a name ending in
0) is assumed to be an archive library or a file of link editor directives. The 1d command has
some 16 options. We are going to describe four of them. These options should be fed to the
link editor by specifying them on the cc command line if you are doing both jobs with the
single command, which is the usual case.

-0 out file provides a name to be used to replace a.out as the name of the
output file. Obviously, the name a.out is of only temporary
usefulness. If you know the name you want used to invoke your
program, you can provide it here. Of course, it may be equally
convenient to do this:

mv a.out progname

when you want to give your program a less temporary name.

-1x directs the link editor to search a library libx.a, where x is up to
nine characters. For C programs, libc.a is automatically searched if
the cc command is used. The -1x option is used to bring in libraries
not normally in the search path such as libm.a, the math library.
The -1x option can occur more than once on a command line, with
different values for the x. A library is searched when its name is
encountered, so the placement of the option on the command line is
important. The safest place to put it is at the end of the command
line. The -1x option is related to the -L option.

-L dir changes the libx.a search sequence to search in the specified
directory before looking in the default library directories, usually
/1ib or /usr/lib. This is useful if you have different versions of a
library and you want to point the link editor to the correct one. It
works on the assumption that once a library has been found no
further searching for that library is necessary. Because -L diverts
the search for the libraries specified by -1x options, it must precede
such options on the command line.

-u symname enters symname as an undefined symbol in the symbol table. This
is useful if you are loading entirely from an archive library,
because initially the symbol table is empty and needs an
unresolved reference to force the loading of the first routine.

When the link editor is called through cc, a startup routine (typically /lib/crt0.0 for C
programs) is linked with your program. This routine calls exit(2) after execution of the main

program.

The link editor accepts a file containing link editor directives. The details of the link editor
command language can be found in Chapter 12.

2.4 THE INTERFACE BETWEEN A PROGRAMMING LANGUAGE AND THE GENIX
V.3 SYSTEM

When a prdgram is run in a computer it depends on the operating system for a variety of
services. Some of the services such as bringing the program into main memory and starting the
execution are completely transparent to the program. They are, in effect, arranged for in
advance by the link editor when it marks an object module as executable. As a programmer
you seldom need to be concerned about such matters.

Other services, however, such as input/output, file management, storage allocation do require
work on the part of the programmer. These connections between a program and the GENIX V.3
operating system are what is meant by the term GENIX V.3 system/language interface. The
topics included in this section are:

e How arguments are passed to a program

e System calls and subroutines

O

e Header files and libraries
e Input/Output
e Processes

e Error Handling, Signals, and Interrupts

2.4.1 Why C Is Used to Illustrate the Interface

Throughout this section C programs are used to illustrate the interface between the GENIX V.3
system and programming languages because C programs make more use of the interface
mechanisms than other high-level languages. What is really being covered in this section then
is the GENIX V.3 system/C Language interface. The way that other languages deal with these
topics is described in the user’s guides for those languages.

2.4.2 How Arguments Are Passed to a Program

Information or control data can be passed to a C program as arguments on the command line.
When the program is run as a command, arguments on the command line are made available to
the function main in two parameters, an argument count and an array of pointers to character
strings. (Every C program is required to have an entry module by the name of main.) Since
the argument count is always given, the program does not have to know in advance how many
arguments to expect. The character strings pointed at by elements of the array of pointers
contain the argument information.

The arguments are presented to the program traditionally as argc and argv, although any
names you choose will work. Argc is an integer that gives the count of the number of
arguments. Since the command itself is considered to be the first argument, argv{0], the count
is always at least one. Argv is an array of pointers to character strings (arrays of characters
terminated by the null character \0).

If you plan to pass runtime parameters to your program, you need to include code to deal with
. the information. Two possible uses of runtime parameters are:

e as control data. Use the information to set internal flags that control the operation of the
program.

e to provide a variable filename to the program.
Figures 2-1 and 2-2 show program fragments that illustrate these uses.

The shell, which makes arguments available to your program, considers an argument to be any
non-blank characters separated by blanks or tabs. Characters enclosed in double quotes (“abc
def") are passed to the program as one argument even if blanks or tabs are among the
characters. It goes without saying that you are responsible for error checking and otherwise
making sure the argument received is what your program expects it to be.

A third argument is also present, in addition to argc and argv. The third argument, known as
envp, is an array of pointers to environment variables. You can find more information on
envp in the Programmer’s Re ference Manual under exec(2) and environ(5).

#include <stdio.h>
#define TRUE 1
#define FALSE O

main(argc, argv)
int arge;
char *argv[}
{
void exit(;
int oflag = FALSE;
int pflag = FALSE; /* Function Flags */
int rflag = FALSE;
int ch;

while ((ch = getopt(argc,argv, "opr")) = EOF)
{ .
/* For options present, set flag to TRUE */

/¥ If no options present, print error message */

switch (ch)
{
case 0"
oflag = 1;
break;
case ’p”
pflag = 1;
break;
case 'r’:
rflag=1;
break;
default:
(void)fprintf(stderr, "Usage: %s [-opr]\n", argv{0]);
exit(2);

——

Figure 2-1. Using Command Line Arguments to Set Flags

2-10

@

#include <stdio.h>

main(argc, argv)
int argc;
char *argv(}
{
FILE *fopen(), *fin;
void perror(), exit(;

if (arge > 1)
{
if ((fin = fopen(argv[1], "r")) == NULL)
{
/* First string (%s) is program name (argv[0]) */
/* Second string (%s) is name of file that could */
/* not be opened (argv[1]) */

(void)fprintf(stderr, "%s: cannot open %s: ", argv[0], argv[1]);
perro r(ml);
exit(2);

Figure 2-2. Using argvln] Pointers to Pass a Filename

2-11

2.4.3 System Calls and Subroutines

System calls are requests from a program for an action to be performed by the GENIX V.3
system kernel. Subroutines are precoded modules used to supplement the functionality of a
programming language.

Both system calls and subroutines look like functions such as those you might code for the
individual parts of your program. There are, however, differences between them:

e At link edit time, the code for subroutines is copied into the object file for your program;
the code invoked by a system call remains in the kernel.

e At execution time, subroutine code is executed as if it was code you had written yourself;
a system function call is executed by switching from your process area to the kernel.

This means that while subroutines make your executable object file larger, runtime overhead
for context switching may be less and execution may be faster.

2.4.3.1 Categories of System Calls and Subroutines
System calls divide fairly neatly into the following categories:
e file access
¢ file and directory manipulation
e process control .
e environment control and status information

You can generally tell the category of a subroutine by the section of the Programmer’s
Re ference Manual in which you find its manual page. However, the first part of Section 3 (3C
and 3S) covers such a variety of subroutines it might be helpful to classify them further.

e The subroutines of sub-class 3S constitute the GENIX V.3 system/C Language standard 1/0,
an efficient 1/0 buffering scheme for C.

e The subroutines of sub-class 3C do a variety of tasks. They have in common the fact that
their object code is stored in libc.a. They can be divided into the following categories:

— string manipulation
— character conversion
. — character classification
— environment management
— memory management

Table 2-1 lists the functions that compose the standard 1/0 subroutines. Frequently, one
manual page describes several related functions. In Table 2-1 the left hand column contains
the name that appears at the top of the manual page; the other names in the same row are
related functions described on the same manual page.

2-12

TABLE 2-1. C LANGUAGE STANDARD I/0 SUBROUTINES

FUNCTION NAME(S) PURPOSE
fclose flush close or flush a stream
ferror feof clearerr fileno | stream status inquiries
fopen freopen fdopen open a stream
fread fwrite binary input/output
fseek rewind ftell reposition a file pointer in a stream
getc getchar fgetc getw | get a character or word from a stream
gets fgets get a string from a stream
popen pclose begin or end a pipe to/from a process
printf fprintf sprintf print formatted output
putc putchar fputc putw | put a character or word on a stream
puts fputs put a string on a stream
scanf fscanf sscanf convert formatted input
setbuf setvbuf assign buffering to a stream
system issue a command through the shell
tmpfile create a temporary file
tmpnam tempnam create a name for a temporary file
ungetc push character back into input stream
vprintf vfprintf vsprintf print formatted output of a varargs

argument list

For all functions: #include <stdio.h>

The function names shown may be found in the Programmer’s Reference
Manual, Section 3.

2-13

Table 2-2 lists string handling functions that are grouped under the heading string(3C) in the
Programmer’s Re ference Manual.

Table 2-3 lists macros that classify ASCII character-coded integer values. These macros are
described under the heading ctype(3C) in Section 3 of the Programmer’s Re ference Manual.

Table 2-4 lists functions and macros that are used to convert characters, integers, or strings
from one representation to another.

2.4.3.2 Where the Manual Pages Can Be Found

System calls are listed alphabetically in Section 2 of the Programmer’'s Reference Manual.
Subroutines are listed in Section 3. We have described above what is in the first subsection of
Section 3. The remaining subsections of Section 3 are:

o 3M—functions that make up the Math Library, libm
e 3X—various specialized functions "

o 3F—the FORTRAN intrinsic function library, libF77
e 3N—Networking Support Utilities

2.4.3.3 How System Calls and Subroutines Are Used in C Programs

Information about the proper way to use system calls and subroutines is given on the manual
page, but you have to know what you are looking for before it begins to make sense. To
illustrate, a typical manual page (for gets(3S)) is shown in Figure 2-3.

As you can see from the illustration, two related functions are described on this page: gets and
fgets. Each function gets a string from a stream in a slightly different way. The
DESCRIPTION section tells how each operates.

It is the SYNOPSIS section, however, that contains the critical information about how the

function (or macro) is used in your program. Notice in Figure 2-3 that the first line in the
SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard I/0 header file into your
program (generally right at the top of the file). There is something in stdio.h that is needed
when you use the described functions. Figure 2-5 shows a version of stdio.h. Check it to see if
you can understand what gets or fgets uses.

2-14

TABLE 2-2. STRING OPERATIONS

STRING OPERATIONS -

strcat(él, s2)
strncat(sl, s2, n)
stremp(s1, s2)
strncmp(s1, s2, n)

strepy(s1, s2)

strncpy(s1, s2, n)

strdup(s)
strchr(s, ¢)
strrehr(s, ¢)
strlen(s)

strpbrk(sl, s2)

strspn(s1, s2)
strespn(sl, s2)

strtok(s1, s2)

append a copy of s2 to the end of si.
append n characters from s2 to the end of sl.

compare two strings. Returns an integer less than, greater than
or equal to O to show that sl is lexicographically less than,
greater than or equal to s2.

compare n characters from the two strings. Results are
otherwise identical to strcmp.

copy s2 to sl, stopping after the null character (\0) has been
copied.

copy n characters from s2 to sl. s2 will be truncated if it is
longer than n, or padded with null characters if it is shorter
than n.

returns a pointer to a new string that is a duplicate of the

_string pointed to by s.

returns a pointer to the first occurrence of character c in string
s, or a NULL pointer if c is not in s.

returns a pointer to the last occurrence of character c in string
s, or a NULL pointer if c is not in s.

returns the number of characters in s up to the first null
character.

returns a pointer to the first occurrence in s1 of any character
from s2, or a NULL pointer if no character from s2 occurs in
sl.

returns the length of the initial segment of s1, which consists
entirely of characters from s2.

returns the length of the initial segment of s1, which consists
entirely of characters not from s2.

look for occurrences of s2 within sl.

For all functions: #include <string.h>

String.h provides extern definitions of the string functions.

2-15

TABLE 2-3. CLASSIFYING ASCII CHARACTER-CODED INTEGER VALUES

CLASSIFY CHARACTERS

‘ isalpha(c) | is c a letter

isupper(c) | is c an upper-case letter

islower(c) | is c a lower-case letter

isdigit(c) is c a digit [0-9]

isxdigit(c) | is c a hexadecimal digit [0-9], [A-F] or [a-f]
isalnum(c) | is c an alphanumeric (letter or digit)

isspace(c) is ¢ a space, tab, carriage return, new-line, vertical tab
or form-feed

ispunct(c) | is ¢ a punctuation character (neither control nor |

alphanumeric)

isprint(c) | is c a printing character, code 040 (space) through 0176
(tilde)

isgraph(c) | same as isprint except false for 040 (space)

isentrl(c) is ¢ a control character (less than 040) or a delete
character (0177)

isascii(c) is ¢ an ASCII character (code less than 0200)

For all functions: #include <ctype.h>

Nonzero return == true; zero return == false

2-16

TABLE 2-4. CONVERSION FUNCTIONS AND MACROS

FUNCTION NAME(S) PURPOSE
a641 164a convert between long integer and base-64 ASCII string
ecvt fcvt gevt | convert floating-point number to string
13tol 1tol3 convert between 3-byte integer and long integer
strtod atof convert string to double-precision number
strtol atol atoi | convert string to integer
CONV(3C) TRANSLATE CHARACTERS
toupper lower-case to upper-case
__toupper macro version of toupper
tolower upper-case to lower-case
__tolower macro version of tolower
toascii turn off all bits that are not part of a standard ASCII

character; intended for compatibility with other systems

For all conv{(3C) macros: #include <ctype.h>

2-17

" NAME

gets, fgets - get a string from a stream

SYNOPSIS
. #include <stdio.h>

char sgets (s)
char *s;

char #fgets (s, n, stream)
char *s;

int nj

FILE sstream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file
condition is encountered. The new-line character is discarded and the string
is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by s,
until n-1 characters are read, or a new-line character is read and transferred
to s, or an end-of-file condition is encountered. The string is then
terminated with a null character.

SEE ALSO
ferror(3S),
fopen(3S),
fread(3S),
getc(3S),
scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned. Otherwise s is returned.

Figure 2-3. Manual Page for Gets(3S)

2-18

The next thing shown in the SYNOPSIS section of a manual page that documents system calls
or subroutines is the formal declaration of the function. The formal declaration tells you:

e the type of object returned by the function
In our example, both gets and fgets return a character pointer.
e the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function. Gets expects a character
pointer. (The DESCRIPTION section sheds light on what the tokens of the formal
declaration stand for.)

e how the function is going to treat those objects
The declaration
char *s;

in gets means that the token s enclosed in the parentheses will be considered to be a
pointer to a character string. Bear in mind that in the C language, when passed as an
argument, the name of an array is converted to a pointer to the beginning of the array.

We have chosen a simple example here in gets. If you want to test yourself on something a
little more complex, try working out the meaning of the elements of the fgets declaration.

While we’re on the subject of fgets, there is another piece of C esoterica that we’ll explain.
Notice that the third parameter in the fgets declaration is referred to as stream. A stream, in
this context, is a file with its associated buffering. It is declared to be a pointer to a defined type
FILE. Where is FILE defined? Right! In stdio.h.

To finish off this discussion of the way you use functions described in the Programmer’s
Reference Manual in your own code, in Figure 2-4 we show a program fragment in which
gets is used.

You might ask, “Where is gets reading from?” The answer is, “From the standard input.” That
generally means from something being keyed in from the terminal where the command was
entered to get the program running, or output from another command that was piped to gets.
How do we know that? The DESCRIPTION section of the gets manual page says, “gets reads
characters from the standard input...” Where is the standard input defined? In stdio.h.

2.4.4 Header Files and Libraries

In the earlier parts of this chapter there have been frequent references to stdio.h, and a version
of the file itself is shown in Figure 2-5. Stdio.h is the most commonly used header file in the
GENIX V.3 system/C environment, but there are many others.

2-19

#include <stdio.h>

mainQ
! char sarray[80}
for(;})
t if (gets(sarray) = NULL)
. ~/* Do something with the string */
}
}

Figure 2-4. How Gets Is Used in a Program

2-20

#ifndef _ NFILE
#define _ NFILE

#define BUFSIZ
#define _ SBFSIZ

typedef struct {
int

20

1024
8

cnt;

unsigned char
unsigned char

char
char
} FILE;

#define _ IOFBF

#define _ IOREAD

#define _IOWRT
#define _ IONBF

#define _ IOMYBUF

#define _ IOEOF
#define _ IOERR
#define _ IOLBF
#define _IORW

#ifndef NULL
#define NULL
#endif

#ifndef EOF
#define EOF(-1)
#endif

_flag;

__file;

0000
0001
0002
0004
0010
0020
0040
0100
0200

*_ptr;
* base;

/* _IOLBF means that a file’s output */
/* will be buffered line by line. */

/* In addition to being flags, _ IONBF,*/

/* _IOLBF and IOFBF are possible */
/* values for "type" in setvbuf. */

Figure 2-5. A Version of Stdio.h

(Sheet 1 of 2)

2-21

#define stdin
#define stdout
#define stderr

#define _bufend(p)

#define _ bufsiz(p)

#ifndef lint
#define getc(p)
#define putc(x, p)

#define getchar()
#define putchar(x)
#define clearerr(p)
#define feof(p)
#define ferror(p)
#define fileno(p)
#endif

(&__iobl0])
(&__iob[1])
(&__iob[2])

_ bufendtabl(p)-> _ file]
(_bufend(p) - (p)->__base)

(—(p)-> _cnt < 0?7 _filbuf(p) : (int) ¥(p)-> _ptr++)
(Hp>>_cnt <0?

_ fisbuf((unsigned char) (), (p)) :

(int) (}(p)->_ptr++ = (unsigned char) (x)))
getc(stdin)

putc((x), stdout)

((void) ((p)->_flag &= (_IOERR | _IOEOF)))
((p)>->_flag & _IOEOF)

((p)->_flag & _IOERR)

(p)>->_file

extern FILE _iob[NFILEL
extern FILE *fopen(), *fdopen(), *freopen(), *popen(), *tmpfile();

extern long ftell(;

extern void rewind(), setbuf();

extern char

*ctermid(), *cuserid(), *fgets(), *getsO), *tempnamQ, *tmpnam(;

extern unsigned char * _bufendtabl};

#define L__ctermid
#define L__cuserid
#define P__tmpdir
#define' L__tmpnam
#endif

9

9

"/usr/tmp/"

(sizeof (P__tmpdir) + 15)

Figure 2-5. A Version of Stdio.h
(Sheet 2 of 2)

2-22

Header files carry definitions and declarations that are used by more than one function. Header
filenames traditionally have the suffix .h, and are brought into a program at compile time by
the C-preprocessor. The preprocessor does this because it interprets the #include statement in
your program as a directive; as indeed it is. All keywords preceded by a pound sign (#) at the
beginning of the line, are treated as preprocessor directives. The two most commonly used
directives are #include and #define. We have already seen that the #include directive is
used to call in (and process) the contents of the named file. The #define directive is used to
replace a name with a token-string. For example,

#define _NFILE 20

sets to 20 the number of files a program can have open at one time. See cpp(1) for the complete
list.

In the pages of the Programmer’s Reference Manual there are about 45 different .h files
named. The format of the #include statement for all these shows the file name enclosed in
angle brackets (< >), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places for the file. In most
systems the standard place is in the /usr/include directory. If you have some definitions or
external declarations that you want to make available in several files, you can create a .h file
with any editor, store it in a convenient directory and make it the subject of a #include
statement such as the following:

#include "../defs/rec.h"

It is necessary, in this case, to provide the relative pathname of the file and enclose it in
quotation marks (""). Fully-qualified pathnames (those that begin with /) can create
portability and organizational problems. An alternative to long or fully-qualified pathnames is
to use the -Idir preprocessor option when you compile the program. This option directs the
preprocessor to search for #include files whose names are enclosed in ", ﬂIStm the directory of
the file being compiled, then in the directories named in the -I'option(s), and finally in
directories on the standard list. In addition, all #include files whose names are enclosed in
angle brackets (< >) are first searched for in the list of directories named in the -I option and
finally in the directories on the standard list.

2.4.5 Object File Libraries

It is common practice in GENIX V.3 system computers to keep modules of compiled code (object
files) in archives; by convention, designated by a .a suffix. System calls from Section 2, and the
subroutines in Section 3, subsections 3C and 3S, of the Programmer’s Reference Manual that
are functions (as distinct from macros) are kept in an archive file by the name of libc.a. In
most systems, libc.a is found in the directory /lib. Many systems also have a directory
/usr/lib. Where both /1ib and /usr/1ib occur, /usr/lib is apt to be used to hold archives that
are related to specific applications.

2-23

During the link edit phase of the compilation and link edit process, copies of some of the object
modules in an archive file are loaded with your executable code. By default the cc command
that invokes the C compilation system causes the link editor to search libc.a. If you need to
point the link editor to other libraries that are not searched by default, you do it. by naming
them explicitly on the command line with the -1 option. The format of the -1 option is -lx
where x is the library name, and can be up to nine characters. For example, if your program
includes functions from the curses screen control package, the option

-lcurses

will cause the link editor to search for /lib/libcurses.a or /usr/lib/libcurses.a and use the
first one it finds to resolve references in your program.

In cases where you want to direct the order in which archive libraries are searched, you may
use the -L dir option. Assuming the -L option appears on the command line ahead of the -1
option, it directs the link editor to search the named directory for libx.a before looking in /lib
and /usr/lib. This is particularly useful if you are testing out a new version of a function
that already exists in an archive in a standard directory. Its success is due to the fact that once
having resolved a reference the link editor stops looking. That’s why the -L option, if used,
should appear on the command line ahead of any -1 specification.

2.4.6 Input/Output

We talked some about .I/O earlier in this chapter in connection with system calls and
subroutines. A whole set of subroutines constitutes the C language standard 1/O package, and
there are several system calls that deal with the same area. In this section we want to get into
the subject in a little more detail and describe for you how to deal with input and output
concerns in your C programs. First off, let’s briefly define what the subject of I/0O encompasses.
It has to do with

e creating and sometimes removing files

e opening and closing files used by your program

e transferring information from a file to your program (reading)
e transferring information from your program to a file (writing)

In this section we will describe some of the subroutines you might choose for transferring
information, but the heaviest emphasis will be on dealing with files.

2-24

O

2.4.6.1 Three Files You Always Have

Programs are permitted to have several files open simultaneously. The number may vary from
system to system; the most common maximum is 20. _ NFILE in stdio.h specifies the number
of standard 1/0 FILEs a program is permitted to have open.

Any program automatically starts off with three files. If you will look again at Figure 2-5,
about midway through you will see that stdio.h contains three #define directives that equate
stdin, stdout, and stderr to the address of _iob[0], _iob[1], and _iob[2], respectively. The
array __iob holds information dealing with the way standard I/O handles streams. It is a
representation of the open file table in the control block for your program. The position in the
array is a digit that is also known as the file descriptor. The default in GENIX V.3 systems is to
associate all three of these files with your terminal.

The real significance is that functions and macros that deal with stdin or stdout can be used in
your program with no further need to open or close files. For example, gets, cited above, reads
a string from stdin; puts writes a null-terminated string to stdout. There are others that do
the same (in slightly different ways: character at a time, formatted, etc.). You can specify that
output be directed to stderr by using a function such as fprintf. Fprintf works the same as
printf except that it delivers its formatted output to a named stream, such as stderr. You can
use the shell’s redirection feature on the command line to read from or write into a named file.
If you want to separate error messages from ordinary output being sent to stdout and thence
possibly piped by the shell to a succeeding program, you can do it by using one function to
handle the ordinary output and a variation of the same function that names the stream, to
handle error messages.

2.4.6.2 Named Files

Any files other than stdin, stdout, and stderr that are to be used by your program must bé
explicitly connected by you before the file can be read from or written to. This can be done
using the standard library routine fopen. Fopen takes a pathname (which is the name by
which the file is known to the GENIX V.3 file system), asks the system to keep track of the
connection, and returns a pointer that you then use in functions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your program you need to have a
declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then assign the name of a
particular file to the pointer with a statement in your program like this:

fin = fopen("filename", "r");

2-25

where filename is the pathname to open. The r means that the file is to be opened for reading.
This argument is known as the mode. As you might suspect, there are modes for reading,
writing, and both reading and writing. Actually, the file open function is often included in an
if statement such as:

if ((fin = fopen("filename”, "r")) = NULL)
(void)f printf(stderr,"%s: Unable to open input file %s\n",argv[0],"filename");

that takes advantage of the fact that fopen returns a NULL pointer if it can’t open the file.

Once the file has been successfully opened, the pointer fin is used in functions (or macros) to
refer to the file. For example:

int c;

¢ = getc(fin);
brings in a character at a time from the file into an integer variable called c. The variable c is
declared as an integer even though we are reading characters because the function getc()

returns an integer. Getting a character is often incorporated into some flow-of-control
mechanism such as:

while ((c = getc(fin)) = EOF)

20,

that reads through the file until EOF is returned. EOF, NULL, and the macro getc are all
defined in stdio.h. Getc and others that make up the standard 1/0 package keep advancing a
pointer through the buffer associated with the file; the GENIX V.3 system and the standard 1/0
subroutines are responsible for seeing that the buffer is refilled (or written to the output file if
you are producing output) when the pointer reaches the end of the buffer. All these mechanics
are mercifully invisible to the program and the programmer.

The. function fclose is used to break the connection between the pointer in your program and
the pathname. The pointer may then be associated with another file by another call to fopen.
This re-use of a file descriptor for a different stream may be necessary if your program has
many files to open. For output files it is good to issue an fclose call because the call makes sure
that all output has been sent from the output buffer before disconnecting the file. The system
call exit closes all open files for you. It also gets you completely out of your process, however,
so it is safe to use only when you are sure you are completely finished.

2-26

2.4.6.3 Low-level I/0 and Why You Shouldn’t Use It

The term low-level I/0 is used to refer to the process of using system calls from Section 2 of
the Programmer’s Reference Manual rather than the functions and subroutines of the
standard 1/0 package. We are going to postpone until Chapter 3 any discussion of when this
might be advantageous. If you find as you go through the information in this chapter that it is
a good fit with the objectives you have as a programmer, it is a safe assumption that you can
work with C language programs in the GENIX V.3 system for a good many years without ever
having a real need to use system calls to handle your I/O and file accessing problems. The
reason low-level 1/0 is perilous is because it is more system-dependent. Your programs are less
portable and probably no more efficient.

2.4.7 System Calls for Environment or Status Information

Under some circumstances you might want to be able to monitor or control the environment in
your computer. There are system calls that can be used for this purpose. Some of them are
shown in Table 2-5.

TABLE 2-5. ENVIRONMENT AND STATUS SYSTEM CALLS

FUNCTION NAME(S) PURPOSE
chdir » change working directory
chmod change access permission of a file
chown change owner and group of a file

getpid getpgrp getppid | get process IDs
getuid geteuid getgid get user IDs

ioctl control device

link unlink add or remove a directory entry
mount umount mount or unmount a file system

nice change priority of a process

stat fstat get file status

time get time

ulimit get and set user limits

uname get name of current GENIX V.3 system

2-27

As you can see, many of the functions shown in Table 2-5 have equivalent GENIX V.3 system
shell commands. Shell commands can easily be incorporated into shell scripts to accomplish the
monitoring and control tasks you may need to do. The functions are available, however, and
may be used in C programs as part of the GENIX V.3 system/C Language interface. They are
documented in Section 2 of the Programmers’ Re ference Manual.

2.4.8 Processes

Whenever you'execute a command in the GENIX V.3 system you are initiating a process that is
numbered and tracked by the operating system. A flexible feature of the GENIX V.3 system is
that processes can be generated by other processes. This happens more than you might ever be
aware of. For example, when you log in to your system you are running a process, very
probably the shell. If you then use an editor such as vi, take the option of invoking the shell
from vi, and execute the ps command, you will see a display something like that in Figure 2-6
(which shows the results of a ps -f command).

UD PD PPID C STIME TTY TIME COMMAND
abc 24210 1 0 06:1314 tty29 005 -sh

abc 24631 24210 0 06:59:07 tty29 0:13 vic2uli

abc 28441 28358 80 091722 tty29 0:01 ps -f

abc 28358 24631 2 091514 tty29 0:01 sh-i

Figure 2-6. Process Status

As you can see, user abc (who went through the steps described above) now has four processes
active. It is an interesting exercise to trace the chain that is shown in the Process ID (PID) and
Parent Process ID (PPID) columns. The shell that was started when user abc logged on is Process
24210; its parent is the initialization process (Process ID 1). Process 24210 is the parent of
Process 24631, and so on.

The four processes in the example above are all GENIX V.3 system shell level commands, but
you can spawn new processes from your own program. (Actually, when you issue the
command from your terminal to execute a program you are asking the shell to start another
process, the process being your executable object module with all the functions and subroutines
that were made a part of it by the link editor.)

2-28

You might think, “Well, it’s one thing to switch from one program to another when I'm at my
terminal working interactively with the computer; but why would a program want to run
other programs, and if one does, why wouldn’t I just put everything together into one big
executable module?”

Overlooking the case where your program is itself an interactive application with diverse
choices for the user, your program may need to run one or more other programs based on
conditions it encounters in its own processing. (If it’s the end of the month, go do a trial
balance, for example.) The usual reasons why it might not be practical to create one monster
executable are:

e The load module may get too big to fit in the maximum process size for your system.

e You may not have control over the object code of all the other modules you want to
include.

Suffice it to say, there are legitimate reasons why this creation of new processes might need to
be done. There are three ways to do it:

o system(3S)—request the shell to execute a command
e exec(2)—stop this process and start another

o fork(2)—start an additional copy of this process

2.4.8.1 System(3S)
The formal declaration of the system function looks like this:
#include <stdio.h>

int system(string)
char #string;

The function asks the shell to treat the string as a command line. The string can therefore be
the name and arguments of any executable program or GENIX V.3 system shell command. If
the exact arguments vary from one execution to the next, you may want to use sprintf to
format the string before issuing the system command. When the command has finished
running, system returns the shell exit status to your program. Execution of your program
waits for the completion of the command initiated by system and then picks up again at the
next executable statement.

2.4.8.2 Exec(2)

Exec is the name of a family of functions that includes execv, execle, execve, execlp, and
execvp. They all have the function of transforming the calling process into a new process.
The reason for the variety is to provide different ways of pulling together and presenting the
arguments of the function. An example of one version (execl) might be:

2-29

For execl the argument list is
/bin/prog2 path name of the new process file
prog the name the new process gets in its argv[0]

progargl, arguments to prog2 as char ¥s
progarg?2

(char)0 . a null char pointer to mark the end of the arguments

Check the manual page in the Programmer’s Reference Manual for the rest of the details.
The key point of the exec family is that there is no return from a successful execution: the
calling process is finished, the new process overlays the old. The new process also takes over the
Process ID and other attributes of the old process. If the call to exec is unsuccessful, control is
returned to your program with a return value of -1. You can check errno (see Section 2.4.9) to
learn why it failed.

2.4.8.3 Fork(2)

The fork system call creates a new process that is an exact copy of the calling process. The
new process is known as the child process; the caller is known as the parent process. The one
major difference between the two processes is that the child gets its own unique process ID.
When the fork process has completed successfully, it returns a O to the child process and the
child’s process ID to the parent. If the idea of having two identical processes seems a little
funny, consider this:

o Because the return value is different between the child process and the parent, the
program can contain the logic to determine different paths.

e The child process could say, “Okay, 'm the child. I'm supposed to issue an exec for an
entirely different program.”

e The parent process could say, “My child is going to be execing a new process. I'll issue a
wait until I get word that that process is finished.”

To take this out of the storybook world where programs talk like people and into the world of
C programming (where people talk like programs), your code might include statements like
those shown in Figure 2-7.

Because the child process ID is taken over by the new exec’d process, the parent knows the ID.
What this boils down to is a way of leaving one program to run another, returning to the point
in the first program where processing left off. This is exactly what the system(3S) function
does. As a matter of fact, system accomplishes it through this same procedure of forking and
execing, with a wait in the parent.

Keep in mind that the fragment of code above includes a minimum amount of checking for
error conditions. There is also potential confusion about open files and which program is
writing to a file. Leaving out the possibility of named files, the new process created by the
fork or exec has the three standard files that are automatically opened: stdin, stdout, and
stderr. If the parent has buffered output that should appear before output from the child, the
buffers must be flushed before the fork. Also, if the parent and the child process both read

2-30

#include <errno.h>

int ch_stat, ch__pid, status;
char *progarg1;

char *progarg?2;

void exit();

extern int errno;

if ((ch__pid = forkQ) < 0)

{

/* Could not fork...
check errno
*/

}

else if (ch__pid == 0) /* child */

{
(void)execl("/bin/prog2","prog",progarg1,progarg2,(char ¥)0);
exit(2);, /* execl() failed */

}

else /* parent */

{
while ((status = wait(&ch_stat)) = ch_ pid)
{

if (status < 0 && errno == ECHILD)
break;
errno = 0;

Figure 2-7. Example of Fork

2-31

input from a stream, whatever is read by one process will be lost to the other. That is,-once
something has been delivered from the input buffer to a process the pointer has moved on.

2.4.8.4 Pipes

The idea of using pipes, a connection between the output of one program and the input of
another, when working with commands executed by the shell is well established in the GENIX
V.3 system environment. For example, to learn the number of archive files in your system you
might enter a command like:

echo /1ib/*.a /usr/lib/*.a | wc -w

that first echoes all the files in /1ib and /usr/lib that end in .a, then pipes the results to the wc
command, which counts their number.

A feature of the GENIX V.3 system/C Language interface is the ability to establish pipe
connections between your process and a command to be executed by the shell, or between two
cooperating processes. The first uses the popen(3S) subroutine that is part of the standard 1I/0
package; the second requires the system call pipe(2).

Popen is similar in concept to the system subroutine in that it causes the shell to execute a
command. The difference is that once having invoked popen from your program, you have
established an open line to a concurrently running process through a stream. You can send
characters or strings to this stream with standard I/0 subroutines just as you would to stdout
or to a named file. The connection remains open until your program invokes the companion
pclose subroutine. A common application of this technique might be a pipe to a printer spooler,
as illustrated in Figure 2-8.

2.4.9 Error Handling

Within your C programs you must determine the appropriate level of checking for valid data
and for acceptable return codes from functions and subroutines. If you use any of the system
calls described in Section 2 of the Programmer’'s Re ference Manual, you have a way in which
you can find out the probable cause of a bad return value.

GENIX V.3 system calls that are not able to complete successfully almost always return a value
of -1 to your program. (If you look through the system calls in Section 2, you will see that
there are a few calls for which no return value is defined, but they are the exceptions.) In
addition to the -1 that is returned to the program, the unsuccessful system call places an integer
in an extérnally declared variable, errno. You can determine the value in errno if your
program contains the statement

#include <errno.h>

The value in errno is not cleared on successful calls, so your program should check it only if
the system call returned a -1. The errors are described in intro(2) of the Programmer’s
Re ference Manual.

The subroutine perror(3C) can be used to print an error message (on stderr) based on the
value of errno.

2-32

#include <stdio.h>

main()

{
FILE *pptr;
char *outstring;

if ((pptr = popen("1p","w")) = NULL)
{

for(;)
{

/¥ Organize output */

(void)fprintf(pptr, "%s\n", outstring);

pclose(pptr);
}

.

Figure 2-8. Example of a Popen Pipe

2-33

2.4.10 Signals and Interrupts

Signals and interrupts are two words for the same thing. Both words refer to messages passed
by the GENIX V.3 system to running processes. Generally, the effect is to cause the process to
stop running. Some signals are generated if the process attempts to do something illegal; others
can be initiated by a user against his or her own processes, or by the supér—userhgainst any
process.

There is a system call, kill, that you can include in your program to send signals to other
processes running under your user-ID. The format for the kill call is:

kill(pid, sig)

where pid is the process number against which the call is directed, and sig is an integer from 1
to 19 that shows the intent of the message. The name “kill” is something of an overstatement;
not all the messages have a “drop dead” meaning. Some of the available signals are shown in
Figure 2-9 as they are defined in <sys/signal.h>.

The signal(2) system call is designed to let you code methods of dealing with incoming signals.
You have a three-way choice. You can a) accept whatever the default action is for the signal,
b) have your program ignore the signal, or ¢) write a function of your own to deal with it.

2.5 ANALYSIS/DEBUGGING

The GENIX V.3 system provides several commands designed to help you discover the causes of
problems in programs and to learn about potential problems.

2.5.1 Sample Program

To illustrate how these commands are used and the type of output they produce, we have
constructed a sample program that opens and reads an input file and performs one to three
subroutines according to options specified on the command line. This program does not do
anything you couldn’t do quite easily on your pocket calculator, but it does serve to illustrate
some points. The source code is shown in Figure 2-10. The header file, recdef.h, is shown at
the end of the source code.

The output iaroduced by the various analysis and debugging tools illustrated in this section may
vary slightly from one installation to another. The Programmer’s Re ference Manual is a good
source of additional information about the contents of the reports.

2-34

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD
SIGPWR

SIGPOLL

NSIG
MAXSIG

0N AN A W=

22

23
32

/* hangup */

/* interrupt (rubout) */

/* quit (ASCII FS) */

/* illegal instruction (not reset when caught)*/
/* trace trap (not reset when caught) */

/* 10T instruction */

/* used by abort, replace SIGIOT in the future */
/* EMT instruction */

/* floating point exception */

/* kill (cannot be caught or ignored) */

/* bus error */

/* segmentation violation */

/* bad argument to system call */

/* write on a pipe with no one to read it */

/* alarm clock */

/* software termination signal from kill */

/* user defined signal 1 */

/* user defined signal 2 */

/* death of a child */

/* power-fail restart */ -

/¥ SIGWIND and SIGPHONE only used in GENIX V.3/PC */
/* pollable event occurred */

/* The valid signal number is from 1 to NSIG-1 */
/* size of u_ signall], NSIG-1 <= MAXSIG*/

/* MAXSIG is larger than we need now. */

/* In the future, we can add more signal */

/* number without changing user.h */

Figure 2-9. Signal Numbers Defined in /usr/include/sys/signal.h

2-35

/* Main module — restate.c */

#include <stdio.h>
#include "recdef.h"

#define TRUE 1
#define FALSE O

main(argc, argv)

int argc;

char *argv(};

{
FILE *fopen(), *fin;
void exit();
int getopt();
int oflag = FALSE;
int pflag = FALSE;
int rflag = FALSE;
int ch;
struct rec first; -
extern int opterr;
extern float oppty(), pft(), rfe();

/* restate.c is continued on the next page */

Figure 2-10. Source Code for Sample Program
(Sheet 1 of 4)

2-36

/* restate.c continued */

if (arge < 2)

{
(void) fprintf(stderr, "%s: Must specify option\n",argv{0]);
(void) fprintf(stderr, "Usage: %s -rpo\n", argv[0]);
exit(2);

}

opterr = FALSE;
while ((ch = getopt(argc,argv,"opr")) = EOF)
{

switch(ch)

{

case 0%
oflag = TRUE;
break;

case ’'p*
pflag = TRUE;
break;-

case r’:
rflag = TRUE;
break;

default:
(void) fprintf(stderr, "Usage: %s -rpo\n",argv{0]);
exit(2);

}

}

if ((fin = fopen("info","r")) == NULL)

{

(void) fprintf(stderr, "%s: cannot open input file %s\n",argv[0],"info");
exit(2); .

}

Figure 2-10. Source Code for Sample Program
(Sheet 2 of 4)

2-37

/* restate.c continued */

if (fscanf(fin, "%s %f %f %f %of %of %f" first.pname,&first.ppx,
&first.dp,&first.i,&first.c,&first.t,&first.spx) = 7)
{ .
(void) fprintf(stderr,"%s: cannot read first record from %s\n",
argv[0]"info");
exit(2);
}

printf("Property: %s\n" first.pname);

if(oflag)
printf(" Opportunity Cost: $%#5.2f\n",oppty(&first));

if(pflag)
printf(" Anticipated Profit(loss): $%#7.2f\n",pft(&first));

if(rflag)
printf(" Return on Funds Employed: %#3.2f%%\n",rfe(&first));

/* End of Main Module - restate.c */

/* Opportunity Cost - oppty.c */
#include "recdef.h"

float

oppty(ps)
struct rec *ps;

{
}

return(ps->i/12 * ps->t * ps->dp);

Figure 2-10. Source Code for Sample Program”
(Sheet 3 of 4)

2-38

/* Profit — pft.c ¥/
#include "recdef.h"
float
pft(ps)
struct rec *ps;

{
}

return(ps->spx - ps->ppx + ps->c);

/* Return on Funds Employed - rfe.c */
#include "recdef.h"
float
rfe(ps)

struct rec *ps;

{
}

return(100 * (ps->spx - ps->c) / ps->spx);

~ /* Header File - recdef.h */

struct rec { /* To hold input */
char pname[25};
float ppx;
float dp;
float i;
float c;
float t;
float spx;

Figure 2-10. Source Code for Sample Program
(Sheet 4 of 4)

2-39

2.5.2 Cflow

Clow produces a chart of the external references in C, yacc, lex, and assembly language files.
Using the modules of our sample program, the command

cflow restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-11.

The -r option looks at the caller:callee relationship from the other side. It produces the output
shown in Figure 2-12.

The -ix option causes external and static data symbols to be included. Our sample program has
only one such symbol, opterr. The output is shown in Figure 2-13.

Combining the -r and the -ix options produces the output shown in Figure 2-14.

2.5.3 Ctrace

Ctrace lets you follow the execution of a C program statement by statement. Ctrace takes a
.c file as input and inserts statements in the source code to print out variables as each program
statement is executed. You must direct the output of this process to a temporary .c file. The
temporary file is then used as input to cc. When the resulting a.out file is executed it produces
output that can tell you a lot about what is going on in your program.

Options give you the ability to limit the number of times through loops. You can also include
functions in your source file that turn the trace off and on so you can limit the output to
portions of the program that are of particular interest. '

Ctrace accepts only one source code file as input. To use our sample program to illustrate, it is
necessary to execute the following four commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c

ctrace rfe.c > ctr.c

The names of the output files are completely arbitrary. Use any names that are convenient for
you. The names must end in .c, since the files are used as input to the C compilation system.

cc -0 ct.run ct.main.c ct.op.c ct.p.c ct.r.c
Now the command
" ctorun -opr

produces the output shown in Figure 2-15. The command above will cause the output to be
directed to your terminal (stdout). It is probably a good idea to direct it to a file or to a printer
5o you can refer to it.

Using a program that runs successfully is not the optimal way to demonstrate ctrace. It
would be more helpful to have an error in the operation that could be detected by ctrace. It
would seem that this utility might be most useful in cases where the program runs to
completion, but the output is not as expected.

2-40

main: int(), <restate.c 11>
fprintf: <>
exit: <>
getopt: < >
fopen: <>
fscanf: <>
printf: <>
oppty: float(), <oppty.c 7>
pft: float(), <pft.c 7>
rfe: float(), <rfe.c 8>

O 00NN AW =

o

Figure 2-11. Cflow1 Output, No Options

2-41

YoRE-CHEN B NV B N

exit: <>
main : <>
fopen: <>
main : 2
fprintf: <>
main : 2
fscanf: <>
main : 2
getopt: <>
main : 2
main: int(), <restate.c 11>
oppty: float(), <oppty.c 7>
main : 2
pft: float(), <pftc 7>
main : 2
printf: <>
main : 2
rfe: float(), <rfe.c 8>
main : 2

Figure 2-12. Cflow Output, Using -r Option

2-42

O

®

main: int(), <restate.c 11>
fprintf: <>
exit: <>
opterr: <>
getopt: <>
fopen: <>
fscanf: <>
printf: <>
oppty: float(), <oppty.c 7>
pft: float(, <pftc 7>
rfe: float(), <rfe.c 8>

o0 00N A W=

= O

Figure 2-13. Cfiow Output, Using -ix Option

2-43

=0 00 IO bk LN

(=)

exit: <>
main: <>
fopen: <>
main : 2
fprintf: <>
main : 2
fscanf: <>
main : 2
getopt: <>
main : 2
main: int(), <restate.c 11>
oppty: float(), <oppty.c 7>
main : 2
opterr: <>
main : 2
pft: float(), <pft.c 7>
main : 2
printf: <>
main : 2
rfe: float(), <rfe.c 8>
‘main : 2

Figure 2-14. Cflow Output, Using -t and -ix Options

2-44

8 main(argc, argv)

23

30

31

32
33

35
36

37
48
31

32
33

38
39

40
48

if (arge < 2)

/* argc =2%*/

opterr = FALSE;

/* FALSE == 0 */

/* opterr == 0 */

while ((ch = getopt(argc,argv,"opr")) = EOF)
/* arge == 2 */

/¥ argv == 15729316 */

/¥ ch == 111 0r 0 or "t" */

{
switch(ch)
/¥ch =111 or’c’ or "t" ¥/
case 0™
oflag = TRUE;
/* TRUE == 1 or "h" ¥/
/* oflag == 1 or "h" ¥/
break;
} .
while ((ch = getopt(argc,argv, opr")) = EOF)

/* argc =2 */
/* argv == 15729316 */
/¥ch=112o0r’p ¥/
{
switch(ch)
/¥ch =112 or 'p’*/
case ’p™
: pflag = TRUE;
/* TRUE == 1 or "h" */
/* pflag = 1 or "h" */
break;

Figure 2-15. Ctrace Output

(Sheet 1 of 3)

2-45

31 while ((ch = getopt(argc,argv,‘opr")) = EOF)
/¥ argc == 2 */
/% argv == 15729316 */

/¥ch==114or'r" ¥/

32 |
33 switch(ch)
/¥ch==1140r’r" */
41 case 1’
42 rflag = TRUE;
/¥ TRUE = 1 or "h" */
/* rflag =1 or "h" ¥/
43 break;
48 }
31 while ((ch = getopt(argc,argv,opr™) = EOF)
/* argc == 2%/
/¥ argv == 15729316 */
/¥ch ==-1%

49 if ((fin = fopen("info","r")) = NULL)
/* fin == 140200 */
54 if (fscanf(fin, "%s %of %of Yof %f %f %t" first.pname,&first.ppx,
&first.dp,&first.i,&first.c,&first.t,&first.spx) = 7)
/* fin == 140200 */
/* first.pname = 15729528 */
61 printf("Property: %s0,first.pname);
/¥ first.pname == 15729528 or "Linden_ Place" */ Property: Linden_ Place

63 if(oflag)
/* oflag == 1 or "h" */
64 printf(" Opportunity Cost: $%#5.2f0,0ppty(&first));
5 oppty(ps)
8 return(ps->i/12 * ps->t * ps->dp);
/* ps->i = 1069044203 */
/* ps->t == 1076494336 */
/* ps->dp == 1088765312 */ Opportunity Cost: $4476.87

Figure 2-15. Ctrace Output
(Sheet 2 of 3)

2-46

66 if(pflag)
/* pflag = 1 or "h" */
67 printf(" Anticipated Profit(loss): $%#7.2f0,pf t(&first));
5 pft(ps)
8 return(ps->spx - ps-> ppx + ps->c);
/* ps->spx == 1091649040 */
/¥ ps->ppx == 1091178464 */
/* ps->c == 1087409536 */ Anticipated Profit(loss): $85950.00

69 if(rflag)
/* rflag == 1 or "h" */
70 printf(" Return on Funds Employed: %# 3.2f%%0,rfe(&first));
6 rfe(ps)
9 return(100 * (ps->spx - ps->c) / ps->spx);
/* ps->spx == 1091649040 */
/¥ ps->c == 1087409536 */ Return on Funds Employed: 94.00%

/¥ return */

Figure 2-15. Ctrace Output
(Sheet 3 of 3)

2-47

R S

2.5.4 Cxref

Cxref analyzes a group of C source code files and builds a cross-reference table of the
automatic, static, and global symbols in each file.

The command
cxref -c -0 cx.op restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-16 in a file named, in this case, cx.op. The -c option
causes the reports for the four .c files to be combined in one cross-reference file.

2.5.5 Lint

Lint looks for features in a C program that are apt to cause execution errors, that are wasteful
of resources, or that create problems of portability.

The command
lint restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-17.

Lint has options that will produce additional information. Check the User's Reference
Manual. The error messages give you the line numbers of some items you may want to review.

2.5.6 Prof

Prof produces a report on the amount of execution time spent in various portions of your
program and the number of times each function is called. The program must be compiled with
the -p option. When a program that was compiled with that option is run, a file called
mon.out is produced. Mon.out and a.out (or whatever name identifies your executable file)
are input to the prof command.

The sequence of steps needed to produce a profile report for our sample program is as follows:
Step 1: - Compile the programs with the -p option:
cc -p restate.c oppty.c pft.c rfe.c
Step 2: Run the program to produce a file mon.out.
a.out -opr
Step 3: Execute the prof command:
prof a.out

The example of the output of this last step is shown in Figure 2-18. The figures may vary
from one run to another. You will also notice that programs of very small size, like that used
in the example, produce statistics that are not overly helpful.

2-48

O

restate.c:

oppty.c:

pft.c:

rfec:
SYMBOL

BUFSIZ
EOF

FALSE
FILE

L_ ctermid
L_ cuserid
L_tmpnam
NULL

P_ tmpdir
TRUE
__IOEQF
_IOERR
__IOFBF
_IOLBF
__IOMYBUF
_IONBF
_IOREAD
_IORW
_IOWRT
_NFILE
__SBFSIZ

FILE

/usr/include/stdio.h
/usr/include/stdio.h
restate.c

restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h

FUNCTION

LINE

*9
49 *50
31

* 15 16 17 30

*29 73 74
12

*80

*81

*83

46 *47

49

*82

*5 36 39 42
*41

*42

*36

*43

*40

*39

*37

*44

*38

2%3 73
*16

Figure 2-16. Cxref Output, Using -¢c Option

(Sheet 1 of 5)

2-49

SYMBOL
__base
_buf end().

__bufendtab
_ bufsizO

_cnt
_file
_flag

__iob

_ptr
argc

argv

ch
clearerr()

ctermid()
cuserid()

dp

_exitQ

fdopen()

FILE
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c
/usr/include/stdio.h
restate.c

restate.c

restate.c

restate.c

/recdef.h

pft.c

restate.c

rfe.c

restate.c

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/recdef.h

oppty.c
restate.c

restate.c

/usr/include/stdio.h

FUNCTION

oppty
main

main

LINE
*26

*57
*78

*58

*20

*28

*27

*73

2526 45 51 57
*21 -
8 ()
*9 23 31

8

*10 25 26 31 45 51 57

*6

8

55

9

*18 31 33

@

*67
*T77

*77
—*4
8
55

*13 27 46 52 58

O

*74

Figure 2-16. Cxref Output, Using -c Option

(Sheet 2 of 5)

2-50

SYMBOL
feof() -

ferror()
fgetsO)
fileno()
fin

first
fopen()

fprintf
freopen()

fscanf
ftellQ

getc()
getchar()
getopt()
gets()

i

lint
main()

FILE
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c
restate.c
/usr/include/stdio.h
restate.c

restate.c

/usr/include/stdio.h
restate.c

/ usr) include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c

/usr/include/stdio.h
J/recdef.h

oppty.c

restate.c
/usr/include/stdio.h

restate.c

FUNCTION

main
main

main
main

main

LINE
*68
*69
*77
*70
*12 49 54
*19 54 55 61 64 67 70
*14
12 49
2526 45 51 57

*74
54

*75
*61
*65
*14 31

*77
*5

55
60

*8

Figure 2-16. Cxref Output, Using -c Option

(Sheet 3 of 5)

2-51

FUNCTION LINE

main
main
main
main

main

main

pft
main
main
oppty
pft

rfe

SYMBOL FILE
oflag restate.c
oppty()
oppty.c
restate.c
opterr restate.c
P /usr/include/stdio.h
*62 63 64 67 *67 68 *68 69 *69 70 *70
pdpll /usr/include/stdio.h
pflag restate.c
pftO
pftc
restate.c
pname /recdef.h
restate.c
popen()
/usr/include/stdio.h
ppX J/recdef.h
pftc
restate.c
printf restate.c
ps oppty.c
oppty.c
pftc
pftc
rfec
rfe.c
putcO
/usr/include/stdio.h
putchar()
/usr/include/stdio.h
rec J/recdef.h
' oppty.c
pftc
restate.c
rfe.c

*15 36 63

*5

*21 64

*20 30

*57 *58 *61 62

11
*16 39 66

*5

*21 67
*2

54 61

*74
*3
8
54
61 64 67 70
5
*6 8
5
*6 8
6
*7 9

*62

*66
*1
6

6
19
7

Figure 2-16. Cxref Output, Using -¢c Option

(Sheet 4 of 5)

2-52

SYMBOL
rewind()

rfe()
rflag
setbuf()

SpX

stderr

stdin
stdout

tempnam()
tmpfile()
tmpnam()

u370
u3b
u3bs
vax
X

FILE
/usr/include/stdio.h

restate.c
rfe.c
restate.c

/usr/include/stdio.h
J/recdef.h

pftc

restate.c

rfe.c
/usr/include/stdio.h
restate.c
/usr/include/stdio.h
/usr/include/stdio.h
J/recdef.h

oppty.c

restate.c

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h

FUNCTION LINE

main

main

*76

*21 70
*6
*17 42 69

*76
*8

8

55

9
*55
25 26 45 51 57
*53
*54
*7

8

55

*77
*74

*77

5

8 19

8 19

8 19

*62 63 64 66 *66

Figure 2-16. Cxref Output, Using -c Option

(Sheet 5 of 5)

2-53

restate.c:

restate.c

(71) warninhg: main() returns random value to invocation environment
oppty.c:

pftc:

rfe.c

function returns value which is always ignored
printf

Figure 2-17. Lint Output

2-54

%Time Seconds Cumsecs #Calls msec/call Name

50.0 0.03 0.03 3 8 fevt
20.0 0.01 0.04 6 2. atof
20.0 0.01 0.05 5 2. write
10.0 0.00 0.05 1 5. fwrite
0.0 0.00 0.05 1 0. monitor
0.0 0.00 0.05 1 0. creat
0.0 0.00 0.05 4 0. printf -
0.0 0.00 0.05 2 0. profil
0.0 0.00 0.05 1 0. fscanf
0.0 0.00 0.05 1 0. __doscan
0.0 0.00 0.05 1 0. oppty
0.0 0.00 0.05 1 0. _filbuf
0.0 0.00 0.05 3 0. strchr
0.0 0.00 0.05 1 0. strcmp
0.0 0.00 0.05 1 0. 1dexp
0.0 0.00 0.05 1 0. getenv
0.0 0.00 0.05 1 0. fopen
0.0 0.00 0.05 1 0. _findiop
0.0 0.00 0.05 1 0. open
0.0 0.00 0.05 1 0. main
0.0 0.00 0.05 1 0. read
0.0 - 000 0.05 1 0. strcpy
0.0 0.00 0.05 14 0 ungetc
0.0 0.00 0.05 4 0. _ doprnt
0.0 0.00 0.05 1 0. pft
0.0 0.00 0.05 1 0. rfe
0.0 0.00 0.05 4 0. _ xfisbuf
0.0 0.00 0.05 1 0. _wrtchk
0.0 0.00 0.05 2 0. _findbuf
0.0 0.00 0.05 2 0. isatty
0.0 0.00 0.05 2 0. ioctl
0.0 0.00 0.05 1 0. malloc
0.0 0.00 0.05 1 0. memchr
0.0 0.00 0.05 1 0. memcpy
0.0 0.00 0.05 2 0. sbrk
0.0 0.00 0.05 4 0. getopt

Figure 2-18. Prof Output

2-55

2.5.7 Size

Size prbduces information on the number of bytes occupied by the three sections (text, data,
and bss) of a common object file when the program is brought into main memory to be run.
Here are the results of one invocation of the size command with our ob ject file as an argument.

11832 + 3872 + 2240 = 17944

Don’t confuse this number with the number of characters in the object file that appears when
you do an 1s -1 command. That figure includes the symbol table and other header information
that is not used at run time.

2.5.8 Strip

Strip removes the symbol and line number information from a common object file. When you
issue this command the number of characters shown by the ls -1 command approaches the
figure shown by the size command, but still includes some header information that is not
counted as part of the .text, .data, or .bss section. After the strip command has been executed, it
is no longer possible to use the file with the sdb command.

2.5.9 Sdb

Sdb stands for Symbolic Debugger, which means you can use the symbolic names in your
program to pinpoint where a problem has occurred. You can use sdb to debug C, FORTRAN
77, or PASCAL programs. There are two basic ways to use sdb: by running your program
under control of sdb, or by using sdb to rummage through a core image file left by a program
that failed. The first way lets you see what the program is doing up to the point at which it
fails (or to skip around the failure point and proceed with the run). The second method lets
you check the status at the moment of failure, which may or may not disclose the reason the
program failed.

Chapter 15 contains a tutorial on sdb that describes the interactive commands you can use to
work your way through your program. For the time being we want to tell you just a couple
of key things you need to do when using it.

1. Compile your program(s) with the -g option, which causes additional information to
be generated for use by sdb.

2. Run your program under sdb with the command:
sdb myprog - srcdir

where myprog is the name of your executable file (a.out is the default), and srcdir
is an optional list of the directories where source code for your modules may be
found. The dash between the two arguments keeps sdb from looking for a core
image file.

2-56

O

2.6 PROGRAM ORGANIZING UTILITIES

The following three utilities are helpful in keeping your programming work organized
effectively.

2.6.1 The Make Command

When you have a program that is made up of more than one module of code you begin to run
into problems of keeping track of which modules are up to date and which need to be
recompiled when changes are made in another module. The make command is used to ensure
that dependencies between modules are recorded so that changes in one module results in the
re-compilation of dependent programs. Even control of a program as simple as the one shown
in Figure 2-10 is made easier through the use of make.

The make utility requires a description file that you create with an editor. The description file
(also referred to by its default name: makefile) contains the information used by make to keep
a target file current. The target file is typically an executable program. A description file
contains three types of information:

dependency information tells the make utility the relationship between the modules
that comprise the target program.

executable commands needed to- generate the tafget program. Make uses the
dependency information to determine which executable
commands should be passed to the shell for execution.

macro definitions provide a shorthand notation within the description file to
make maintenance easier. Macro definitions can be overridden
by information from the command line when the make
command is entered.

The make command works by checking the “last changed” time of the modules named in the
description file. When make finds a component that has been changed more recently than
modules that depend on it, the specified commands (usually compilations) are passed to the shell
for execution.

The make command takes three kinds of arguments: options, macro definitions, and target
filenames. If no description filename is given as an option on the command line, make searches
the current directory for a file named makefile or Makefile. Figure 2-19 shows a makefile
for our sample program.

The following things are worth noticing in this description file:

o It identifies the target, restate, as being dependent on the four object modules. Each of
the object modules in turn is defined as being dependent on the header file, recdef.h, and
by default, on its corresponding source file.

e A macro, OBJECTS, is defined as a convenient shorthand for referring to all of the
component modules.

2-57

OBJECTS = restate.o oppty.o pft.o rfe.o
all: restate
restate: $(OBJECTS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o restate

$(OBJECTS): ./recdef.h

clean:
rm -f $(OBJECTS)

clobber: clean
rm -f restate

Figure 2-19. Make Description File

Whenever testing or debugging results in a change to one of the components of restate, for
example, a command such as the following should be entered:

make CFLAGS=-g restate

This has been a very brief overview of the make utility. There is more on make in Chapter 3,
and a detailed description of make can be found in Chapter 13.

2.6.2 The Archive

The most common use of an archive file, although not the only one, is to hold object modules
that make up a library. The library can be named on the link editor command line (or with a
link editor option on the cc command line). This causes the link editor to search the symbol
table of the archive file when attempting to resolve references.

2-58

@

2.6 PROGRAM ORGANIZING UTILITIES

The following three utilities are helpful in keeping your programming work organized
effectively.

2.6.1 The Make Command

When you have a program that is made up of more than one module of code you begin to run
into problems of keeping track of which modules are up to date and which need to be
recompiled when changes are made in another module. The make command is used to ensure
that dependencies between modules are recorded so that changes in one module results in the
re-compilation of dependent programs. Even control of a program as simple as the one shown
in Figure 2-10 is made easier through the use of make.

The make utility requires a description file that you create with an editor. The description file
(also referred to by its default name: makefile) contains the information used by make to keep
a target file current. The target file is typically an executable program. A description file
contains three types of information:

dependency information tells the make utility the relationship between the modules
that comprise the target program.

executable commands needed to generate the tai'get program. Make uses the
dependency information to determine which executable
commands should be passed to the shell for execution.

macro ,deﬁnitié)ns provide a shorthand notation within the description file to
C make maintenance easier. Macro definitions can be overridden
by information from the command line when the make

command is entered.

The make command works by checking the “last changed” time of the modules named in the
description file. When make finds a component that has been changed more recently than
modules that depend on it, the specified commands (usually compilations) are passed to the shell
for execution. '

The make command takes three kinds of arguments: options, macro definitions, and target
filenames. If no description filename is given as an option on the command line, make searches
the current directory for a file named makefile or Makefile. Figure 2-19 shows a makefile
for our sample program.

The following things are worth noticing in this description file:

o It identifies the target, restate, as being dependent on the four object modules. Each of
the object modules in turn is defined as being dependent on the header file, recdef.h, and
by default, on its corresponding source file.

o A macro, OBJECTS, is defined as a convenient shorthand for referring to all of the
component modules.

2-57

OBJECTS = restate.o oppty.o pft.o rfe.o
all: restate
restate: $(OBJECTS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o restate

$(OBJECTS): ./recdef.h

clean:
rm -f $(OBJECTS)

clobber: clean
tm -f restate

Figure 2-19. Make Description File

Whenever testing or debugging results in a change to one of the components of restate, for
example, a command such as the following should be entered:

make CFLAGS=-g restate

This has been a very brief overview of the make utility. There is more on make in Chapter 3,
and a detailed description of make can be found in Chapter 13.

2.6.2 The Archive

The most common use of an archive file, although not the only one, is to hold object modules
that make up a library. The library can be named on the link editor command line (or with a
link editor option on the cc command line). This causes the link editor to search the symbol
table of the archive file when attempting to resolve references.

2-58

Symbols from rste.a[restate.o]

Name

first
ef
FILE
text
.data
Jbss
__iob
fprintf
exit
opterr
getopt
fopen
fscanf
printf
oppty
pft
rfe

Value
20
518

520
824

[eleNoNolNeNeNeNoNeNe Neo)

Class

auto
fen
typdef
static
static
static
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

Type

struct-rec

struct-.Ofake

Size
52
16
31

Line

61

39

Figure 2-20. Nm Output, with -f Option

(Sheet 2 of 5)

2-61

Section

text

text
.data

Symbols from rste.aloppty.o]

Name Value Class Type Size Line Section
oppty.c file

Tec strtag struct 52

pname 0 | strmem char[25] | 25

pPPX 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c - 40 | strmem float

t 44 | strmem float

Spx 48 | strmem float

.05 endstr 52

oppty 0 | extern float() | 64 text

Jbf 10 | fen 7 | .text

ps 0 | argm’t *struct-rec 52

ef 62 | fen 3 | text

text 0 | static 4 1 | .text

.data 64 | static .data
Jbss 72 | static .bss

Figure 2-20. Nm Output, with -f Option
(Sheet 3 of 5)

2-62

Symbols from rste.a[pft.o]

Name

pftc
rec
phame
ppx
dp

i

c

t

Spx
-e0s
pft
~bf
ps
-ef
~text
. ~data

Value

28
32
36
40
44
48

10

58

60
60

Class

file
strtag
strmem
strmem
strmem
strmem
strmem
strmem
strmem
endstr
extern
fen
argm’t
fcn
static
static
static

Type

struct
char[25]

float
float
float
float
float
float

float()

*struct-rec

Size

52
25

52
60

52

Line

Figure 2-20. Nm Output, with -f Option
(Sheet 4 of 5)

2-63

Section

Jgtext
text

.text
text
.data

Symbols from rste.a[rfe.o]

Name

rfe.c
Tec
pname
ppx
dp

i

c

t

spx
.e0s

Jof
ps
ef
Jgtext
~.data
.bss

Value

28
32
36
40
44
48

Class

file
strtag
strmem
strmem
strmem
strmem
strmem
strmem
strmem
endstr
extern
fcn
argm’t
fcn
static
static
static

Type

struct
char{25]
float
float
float
float
float
float

float()

*struct-rec

Size

52
25

52
68

52

O

Line Section

text
8 | .text
3 | .text
1 | .text
data

Figure 2-20. Nm Output, with -f Option
(Sheet 5 of 5)

2-64

2.6.3 Use of SCCS by Single-User Programmers

The GENIX V.3 system Source Code Control System (SCCS) is a set of programs designed to keep
track of different versions of programs. When a program has been placed under control of
SCCS, only a single copy of any one version of the code can be retrieved for editing at a given
time. When program code is changed and the program returned to SCCS, only the changes are
recorded. Each version of the code is identified by its SID, or SCCS IDentifying number. By
specifying the SID when the code is extracted from the SCCS file, it is possible to return to an
earlier version. If an early version is extracted with the intent of editing it and returning it to
SCCS, a new branch of the development tree is started. The set of programs that make up
SCCS appear as GENIX V.3 system commands. The commands are:

admin
get
delta
prs
rmdel
cdc
what
sccsdiff
comb
val

It is most common to think of SCCS as a tool for project control of large programming projects.
It is, however, entirely possible for any individual user of the GENIX V.3 system to set up a
private SCCS system. Chapter 14 describes SCCS.

2-65

Chapter 3
APPLICATION PROGRAMMING

3.1 INTRODUCTION

This chapter deals with programming where the objective is to produce sets of programs
(applications) that will run on a GENIX V.3 system computer.

The chapter begins with a discussion of how the ground rules change as you move up the scale
from writing programs that are essentially for your own private use (we have called this
single-user programming), to working as a member of a programming team developing an
application that is to be turned over to others to use.

There is a section on how the criteria for selecting appropriate programming languages may be
influenced by the requirements of the application.

The next three sections of the chapter deal with a number of loosely-related topics that are of
importance to programmers working in the application development environment. Most of
these mirror topics that were discussed in Chapter 2, Programming Basics, but here we try to
point out aspects of the subject that are particularly pertinent to application programming.
They are covered under the following headings:

Advanced Programming deals with such topics as File and Record Locking, Interprocess
Communication, and programming terminal screens.

Support Tools covers the Common Object File Format, link editor directives,
shared libraries, SDB, and lint.

Project Control Tools includes some discussion of make and SCCS.

The chapter concludes with a description of a sample application called liber that uses several
of the components described in earlier portions of the chapter.

3.2 APPLICATION PROGRAMMING

The characteristics of the application programming environment that make it different from
single-user programming ‘have at their base the need for interaction and for sharing of
information.

31

3.2.1 Numbers

Perhaps the most obvious difference between application programming and single-user
programming is in the quantities of the components. Not only are applications generally
developed by teams of programmers, but the number of separate modules of code can grow into
the hundreds on even a fairly simple application.

When more than one programmer works on a project, there is a need to share such information
as: :

e the operation of each function
e the number, identity and type of arguments expected by a function

e if pointers are passed to a function, are the objects being pointed to modified by the called
function, and what is the lifetime of the pointed-to object

e the data type returned by a function

In an application, there is an odds-on possibility that the same function can be used in many
different programs, by many different programmers. The object code needs to be kept in a
library accessible to anyone on the project who needs it.

3.2.2 Portability

When you are working on a program to be used on a single model of a computer, your concerns
about portability are minimal. In application development, on the other hand, a desirable
objective often is to produce code that will run on many different GENIX V.3 system computers.
Some of the things that affect portability will be touched on later in this chapter.

3.2.3 Documentation

A single-user program has modest needs for documentation. There should be enough to remind
the program’s creator how to use it, and what the intent was in portions of the code.

On an application development project there is a significant need for two types of internal
documentation:

e comments throughout the source code that enable successor programmers to understand
easily what is happening in the code. Applications can be expected to have a useful life
of 5 or more years, and frequently need to be modified during that time. It is not realistic
to expect that the same person who wrote the program will always be available to make
modifications. Even if that does happen the comments will make the maintenance job a
lot easier. :

e hard-copy descriptions of functions should be available to all members of an application
development team. Without them it is difficult to keep track of available modules, which
can result in the same function being written over again.

Unless end-users have clear, readily-available instructions in how to install and use an
application they either will not do it at all (if that is an option), or do it improperly.

O

The microcomputer software industry has become ever more keenly aware of the importance of
good end-user documentation. There are cases on record where the success of a software
package has been attributed in large part to the fact that it had exceptionally good
documentation. There are also cases where a pretty good piece of software was not widely used
due to the inaccessibility of its manuals. There appears to be no truth to the rumor that in one
or two cases, end-users have thrown the software away and just read the manual.

3.2.4 Project Management

Without effective project management, an application development project is in trouble. This
subject will not be dealt with in this guide, except to mention the following three things that
are vital functions of project management:

e tracking dependencies between modules of code
e dealing with change requests in a controlled way

o seeing that milestone dates are met

3.3 LANGUAGE SELECTION

In this section we talk about some of the considerations that influence the selection of
programming languages, and describe two of the special purpose languages that are part of the
GENIX V.3 system environment.

3.3.1 Influences

In single-user programming the choice of language is often a matter of personal preference; a
language is chosen because it is the one the programmer feels most comfortable with.

An additional set of considerations comes into play when making the same decision for an
application development project.

Is there an existing standard within the organization that should be observed?

A firm may decide to emphasize one language because a good supply of programmers
is available who are familiar with it.

Does one language have better facilities for handling the particular algorithm?

One would like to see all language selection based on such objective criteria, but it is
often necessary to balance this against the skills of the organization.

Is there an inherent compatibility between the language and the GENIX V.3 operating
system?

This is sometimes the impetus behind selecting C for programs destined for a GENIX
V.3 system machine.

3-3

Are there existing tools that can be used?

If parsing of input lines is an importdnt phase of the application, perhaps a parser
generator such as yacc should be employed to develop what the application needs.

Does the application integrate other software into the whole package?

If, for example, a package is to be bullt around an existing data base management
system, there may be constraints oh the variety of languages the data base
management system can accommodate.

3.3.2 Special Purpose Languages

The GENIX V.3 system contains a number of tdols that can be included in the category of
special purpose languages. Three that are especially interesting are awk, lex, and yacc.

3.3.2.1 What Awk is Like

The awk utility scans an ASCII input file record by record, looking for matches to specific
patterns. When a match is found, an action is taken. Patterns and their accompanying actions
are contained in a specification file referred to as the program. The program can be made up of
a number of statements. However, since each statement has the potential for causing a complex
action, most awk programs consist of only a few. The set of statements may include definitions
of the pattern that separates one record from another (a newline character, for example), and
what separates one field of a record from the next (white space, for example). It may also
include actions to be performed before the first record of the input file is read, and other actions
to be performed after the final record has been read. All statements in between are evaluated
in order for each record in the input file. To paraphrase the action of a simple awk program, it
would go something like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

First do some initialization.

Then, look through the input file.

Every time you see this specific pattern, do this action.
Every time you see this other pattern, do anotker action.
After all the records have been read, do these final things.

The directions for finding the patterns and for describing the actions can get pretty complicated,
but the essential idea is as simple as the two sets of* statements above.

One of the strong points of awk is that once you are familiar with the language syntax,
programs can be written very quickly. They dor’t always run very fast, however, so they are
seldom appropriate if you want to run the same program repeatedly on a large quantities of
records. In such a case, it is likely to be better to translate the program to a compiled language.

3-4

3.3.2.2 How Awk is Used

One typical use of awk would be to extract information from a file and print it out in a report.
Another might be to pull fields from records in an input file, arrange them in a different order
and pass the resulting rearranged data to a function that adds records to your data base. There
is an example of a use of awk in the sample application at the end of this chapter.

3.3.2.3 Where to Find More Information

The manual page for awk is in Section (1) of the User's Reference Manual. Chapter 4 of this
guide contains a description of the awk syntax and a number of examples showing ways in
which awk may be used.

3.3.2.4 What Lex and Yacc are Like

Lex and yacc are often mentioned in the same breath because they perform complementary
parts of what can be viewed as a single task: making sense out of input. The two utilities also
share the common characteristic of producing source code for C language subroutines from
specifications that appear on the surface to be quite similar.

Recognizing input is a recurring problem in programming. Input can be from various sources.
In a language compiler, for example, the input is normally contained in a file of source language
statements. The GENIX V.3 system shell language most often receives its input from a person
keying in commands from a terminal. Frequently, information coming out of one program is
fed into another where it must be evaluated.

The process of input recognition can be subdivided into two tasks: lexical analysis and parsing,
and that’s where lex and yacc come in. In both utilities, the specifications cause the generation
of C language subroutines that deal with streams of characters; lex generates subroutines that
do lexical analysis while yacc generates subroutines that do parsing.

To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or vocabulary of a language as
distinguished from its grammar or structure.

Parsing is the act of describing units of the language grammatically. Students in
elementary school are often taught to do this with sentence diagrams.

Of course, the important thing to remember here is that in each case the rules for our lexical
analysis or parsing are those we set down ourselves in the lex or yacc specifications. Because of
this, the dividing line between lexical analysis and parsing sometimes becomes fuzzy.

The fact that lex and yacc produce C language source code means that these parts of what may
be a large programming project can be separately maintained. The generated source code is
processed by the C compiler to produce an object file. The object file can be link edited with
others to produce programs that then perform whatever process follows from the recognition of
the input.

3.3.2.5 How Lex is Used

A lex subroutine scans a stream of input characters and waves a flag each time it identifies
something that matches one or another of its rules. The waved flag is referred to as a token.
The rules are stated in a format that closely resembles the one used by the GENIX V.3 system
text editor for regular expressions. For example, '

[\th

describes a rule that recognizes a string of one or more blanks or tabs (without mentioning any
action to be taken). A more complete statement of that rule might have this notation:

[\th

which, in effect, says to ignore white space. It carries this meaning because no action is specified
when a string of one or more blanks or tabs is recognized. The semicolon marks the end of the
statement. Another rule, one that does take some action, could be stated like this:

[0-9F {
i = atoi(yytext);
return(NBR);

}

This rule depends on several things:

NBR must have been defined as a token in an earlier part of the lex source code called the
declaration section. (It may be in a header file which is #include’d in the declaration
section.)

i is declared as an extern int in the declaration section.

It is a characteristic of lex that things it finds are made available in a character string called

yytext.

Actions can make use of standard C syntax. Here, the standard C subroutine, atoi, is used to
convert the string to an integer.

What this rule boils down to is lex saying, “Hey, I found the kind of token we call NBR, and
its value is now in 1.”

To review the steps of the process:

1. The lex specification statements are processed by the lex utility to produce a file
called lex.yy.c. (This is the standard name for a file generated by lex, just as a.out
is the standard name for the executable file generated by the link editor.)

2. Lex.yy.c is transformed by the C compiler (with a —c option) into an object file
called lex.yy.o that contains a subroutine called yylex().

3. Lex.yy.o is link edited with other subroutines. Presumably one of those
subroutines will call yylex() with a statement such as:

while((token = yylex()) = 0)

and other subroutines (or even main) will deal with what comes back.

3.3.2.6 Where to Find More Information

The manual page for lex is in Section (1) of the Programmer’s Reference Manual. A tutorial
on lex is contained in Chapter 5 of this guide.

3.3.2.7 How Yacc is Used
Yacc subroutines are produced by pretty much the same series of steps as lex:

1. The yacc specification is processed by the yacc utility to produce a file called
y.-tab.c.

2. Y.tab.c is compiled by the C compiler producing an object file, y.tab.o, that
contains the subroutine yyparse(). A significant difference is that yyparse() calls a
subroutine called yylex() to perform lexical analysis.

3. The object file y.tab.o may be link edited with other subroutines, one of which will
be called yylex().

There are two things worth noting about this sequence:

1. The parser generated by the yacc specifications calls a lexical analyzer to scan the
input stream and return tokens.

2. While the lexical analyzer is called by the same name as one produced by lex, it
does not have to be the product of a lex specification. It can be any subroutine that
does the lexical analysis.

3-7

What really differentiates these two utilities is the format for their rules. As noted above, lex
rules are regular expressions like those used by GENIX V.3 system editors. Yacc rules are chains
of definitions and alternative definitions, written in Backus-Naur form, accompanied by actions.
The rules may refer to other rules defined further down the specification. Actions are sequences
of C language statements enclosed in braces. They frequently contain numbered variables that
enable you to reference values associated with parts of the rules. An example might make that
easier to understand:

9Yotoken NUMBER
9% .
expr :numb {$$=31;}
| expr '+ expr {$$=91+83)
| expr -’ expr {$$=91-8$3}
| expr ¥ expr {$$=81*$3;}
| expr ’/ expr {$$=81/83}
I’C expr *Y {$8=82}
numb : NUMBER {$$=31}

.
k4

This fragment of a yacc specification shows
o NUMBER identified as a token in the declaration section
e the start of the rules section indicated by the pair of percent signs

e a number of alternate definitions for expr separated by the | sign and terminated by the
semicolon

e actions to be taken when a rule is matched
e within actions, numbered variables used to represent components of the rule:
$$ means the value to be returned as the value of the whole rule

$n means the value associated with the nth component of the rule, counting from the
left

e numb defined as meaning the token NUMBER. This is a trivial example that illustrates
that one rule can be referenced within another, as well as within itself.

As with lex, the compiled yacc object file will generally be link edited with other subroutines
that handle processing that takes place after the parsing—or even ahead of it.

3-8

3.3.2.8 Where to Find More Information

The manual page for yacc is in Section (1) of the Programmer's Reference Manual. A
detailed description of yacc may be found in Chapter 6 of this guide.

3.4 ADVANCED PROGRAMMING TOOLS

In Chapter 2 we described the use of such basic elements of programming in the GENIX V.3
system environment as the standard 1/0 library, header files, system calls and subroutines. In
this section we introduce tools that are more apt to be used by members of an application
development team than by a single-user programmer. The section contains material on the
following topics:

e memory management
e file and record locking
@ interprocess communication

e programming terminal screens

3.4.1 Memory Management

There are situations where a program needs to ask the operating system for blocks of memory.
It may be, for example, that a number of records have been extracted from a data base and need
to be held for some further processing. Rather than writing them out to a file on secondary
storage and then reading them back in again, it is likely to be a great deal more efficient to hold
them in memory for the duration of the process. (This is not to ignore the possibility that
portions of memory may be paged out before the program is finished; but such an occurrence is
not pertinent to this discussion.) There are two C language subroutines available for acquiring
blocks of memory and they are both called malloc. One of them is malloc(3C), the other is
malloc(3X). Each has several related commands that do specialized tasks in the same area.
They are:

e free—to inform the system that space is being relinquished
e realloc—to change the size and possibly move the block
e calloc—to allocate space for an array and initialize it to zeros

In addition, malloc(3X) has a function, mallopt, that provides for control over the space
allocation algorithm, and a structure, mallinfo, from which the program can get information
about the usage of the allocated space.

Malloc(3X) runs faster than the other version. It is loaded by specif ying
-lmalloc

on the cc(1) or 1d(1) command line to direct the link editor to the proper library. When you
use malloc(3X) your program should contain the statement

#include <malloc.h>
where the values for mallopt options are defined.

See the Programmer’s Re ference Manual for the formal definitions of the two mallocs.

3.4.2 File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent the sort of error
that can occur when two or more users of a file try to update information at the same time.
The classic example is the airlines reservation system where two ticket agents each assign a
passenger to Seat A, Row 5 on the 5 o’clock flight to Detroit. A locking mechanism is designed
to prevent such mishaps by blocking Agent B from even seeing the seat assignment file until
Agent A’s transaction is complete.

File locking and record locking are really the same thing, except that file locking implies the
whole file is affected; record locking means that only a specified portion of the file is locked.
(Remember, in the GENIX V.3 system, file structure is undefined; a record is a concept of the
programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places a read lock on a
file, other processes can also read the file but all are prevented from writing to it, that is,
changing any of the data. If a process places a write lock on a file, no other processes can read
or write in the file until the lock is removed. Write locks are also known as exclusive locks.
The term shared lock is sometimes applied to read locks.

Another distinction needs to be made between mandatory and advisory locking. Mandatory
locking means that the discipline is enforced automatically for the system calls that read, write
or create files. This is done through a permission flag established by the file’s owner (or the
super-user). Advisory locking means that the processes that use the file take the responsibility
for setting and removing locks as needed. Thus mandatory may sound like a simpler and
better deal, but it isn’t so. The mandatory locking capability is included in the system to
comply with an agreement with /usr/group, an organization that represents the interests of
GENIX V.3 system users. The principal weakness in the mandatory method is that the lock is in
place only while the single system call is being made. It is extremely common for a single
transaction to require a series of reads and writes before it can be considered complete. In cases
like this, the term atomic is used to describe a transaction that must be viewed as an indivisible
unit. The preferred way to manage locking in such a circumstance is to make certain the lock
is in place before any I/0 starts, and that it is not removed until the transaction is done. That
calls for locking of the advisory variety.

3-10

)

3.4.2.1 How File and Record Locking Works

The system call for file and record locking is fentl(2). Programs should include the line
#include <fcntlh>

to bring in the header file shown in Figure 3-1.

The format of the fcntl(2) system call is

int fentl(fildes, cmd, arg)
int fildes, cmd, arg;

Fildes is the file descriptor returned by the open system call. In addition to defining tags that
are used as the commands on fcntl system calls, fentl.h includes the declaration for a struct
Jlock that is used to pass values that control where locks are to be placed.

3.4.2.2 Lockf

A subroutine, lockf(3), can also be used to lock sections of a file or an entire file. The format of
lockf is:

#include <unistd.h>

int lockf (fildes, function, size)
int fildes, function;
long size;

Fildes is the file descriptor; function is one of four control values defined in unistd.h that let
you lock, unlock, test and lock, or simply test to see if a lock is already in place. Size is the
number of contiguous bytes to be locked or unlocked. The section of contiguous bytes can be
either forward or backward from the current offset in the file. (You can arrange to be
somewhere in the middle of the file by using the 1seek(2) system call.)

3.4.2.3 Where to Find More Information

There is an example of file and record locking in the sample application at the end of this
chapter. The manual pages that apply to this facility are fentl(2), fentl(5), lockf(3), and
chmod(2) in the Programmer’s Reference Manual. Chapter 7 of this guide is a detailed
discussion of the subject with a number of examples.

3.4.3 Interprocess Communications

In Chapter 2 we described forking and execing as methods of communicating between
processes. Business applications running on a GENIX V.3 system computer often need more
sophisticated methods. In applications, for example, where fast response is critical, a number of
processes may be brought up at the start of a business day to be constantly available to handle
transactions on demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation example again for a
moment, if a customer calls to reserve a seat on the 5 o’clock flight to Detroit, you don’t want to
have to say, “Yes, sir. Just hang on a minute while I start up the reservations program.” In

/* Flag values accessible to open(2) and fcnt1(2) ¥/

/* (The first three can only be set by open) */

#define O_RDONLY O

#define O_WRONLY 1

#define O_RDWR 2

#define O_NDELAY 04 /* Non-blocking I/0 */

#define O_APPEND 010 /* append (writes guaranteed at the end) */

#define O_SYNC 020 /* synchronous write option */

/* Flag values accessible only to open(2) ¥/

#define O_CREAT 00400/* open with file create (uses third open arg)*/
#define O_TRUNC 01000/* open with truncation */

#define O_EXCL 02000 /* exclusive open */

/* fentl(2) requests */
#define F_DUPFD
#define F_GETFD
#define F_SETFD /* Set fildes flags */
#define F_GETFL /* Get file flags */

0 /* Duplicate fildes */

1

2

3
#define F_SETFL 4 /* Set file flags */

5

6

7

8

/* Get fildes flags */

#define F_GETLK /* Get file lock */

#define F_SETLK /* Set file lock */

#define F_SETLKW /* Set file lock and wait */

#define F_CHKFL /* Check legality of file flag changes */

/* file segment locking set data type - information passed to system by user */
struct flock {

short 1_type;
short 1_whence;
long 1_start;
long 1_len;/* len = O means until end of file */
short 1_sysid;
- short 1_pid;

b
/¥ file segment locking types */
' /* Read lock */

#define F_RDLCK 01

/* Write lock */
#define F_WRLCK 02

/* Remove lock(s) */
#define F_UNLCK 03

Figure 3-1. The Fcntl.h Header File

312

transaction driven systems, the normal mode of processing is to have all the components of the
application standing by waiting for some sort of an indication that there is work to do.

To meet requirements of this type the GENIX V.3 system offers a set of nine system calls and
their accompanying header files, all under the umbrella name of Interprocess Communications
(IPC).

The IPC system calls come in sets of three; one set each for messages, semaphores, and shared
memory. These three terms define three different styles of communication between processes:

messages communication is in the form of data stored in a buffer. The buffer can
be either sent or received.

semaphores communication is in the form of positive integers with a value between
0 and 32,767. Semaphores may be contained in an array the size of
which is determined by the system administrator. The default
maximum size for the array is 25.

shared memory communication takes place through a common area of main memory.
One or more processes can attach a segment of memory and as a
consequence can share whatever data is placed there.

The sets of IPC system calls are:
msgget semget shmget

msgctl semctl shmctl
msgop semop shmop

3.4.3.1 IPC Get Calls

The get calls each return to the calling program an identifier for the type of IPC facility that is
being requested.

3.4.3.2 IPC Ctl Calls

The ctl calls provide a variety of control operations that include obtaining (IPC_STAT),
setting (IPC_SET) and removing (IPC_RMID), the values in data structures associated with the
identifiers picked up by the get calls.

3.4.3.3 IPC Op Calls

The op manual pages describe calls that are used to perform the particular operations
characteristic of the type of IPC facility being used. Msgop has calls that send or receive
messages. Semop (the only one of the three that is actually the name of a system call) is used
to increment or decrement the value of a semaphore, among other functions. Shmop has calls
that attach or detach shared memory segments.

3-13

3.4.3.4 Where to Find More Information

An example of the use of some IPC features is included in the sample application at the end of
this chapter. The system calls are all located in Section (2) of the Programmer’s Reference
Manual. Don’t overlook intro(2). It includes descriptions of the data structures that are used
by IPC facilities. A detailed description of IPC, with many code examples that use the IPC
system calls, is contained in Chapter 9 of this guide.

3.4.4 Programming Terminal Screens

The facility for setting up terminal screens to meet the needs of your application is provided by
two parts of the GENIX V.3 system. The first of these, terminfo, is a data base of compiled
entries that describe the capabilities of terminals and the way they perform various operations.

The terminfo data base normally begins at the directory /usr/lib/terminfo. The members
of this directory are themselves directories, generally with single-character names that are the
first character in the name of the terminal. The compiled files of operating characteristics are at
the next level down the hierarchy. For example, the entry for a Teletype 5425 is located in
both the file /usr/lib/terminfo/5/5425 and the file /usr/lib/terminfo/t/tty5425.

Describing the capabilities of a terminal can be a painstaking task. Quite a good selection of
terminal entries is included in the terminfo data base that comes with your Series 32000
Computer. However, if you have a type of terminal that is not already described in the data
base, the best way to proceed is to find a description of one that comes close to having the same
capabilities as yours and ‘building on that one. There is a routine (setupterm) in curses(3X)
that can be used to print out descriptions from the data base. Once you have worked out the
code that describes the capabilities of your terminal, the tic(1M) command is used to compile
the entry and add it to the data base.

3.4.4.1 Curses

After you have made sure that the operating capabilities of your terminal are a part of the
terminfo data base, you can then proceed to use the routines that make up the curses(3X)
package to create and manage screens for your application.

The curses library includes functions to:
e define portions of your terminal screen as windows

e define pads that extend beyond the borders of your physical terminal screen and let you
see portions of the pad on your terminal

e read input from a terminal screen into a program
e write output from a program to your terminal screen

e manipulate the information in a window in a virtual screen area and then send it to your
physical screen

3-14

3.4.4.2 Where to Find More Information

In the sample application at the end of this chapter, we show how you might use curses
routines. Chapter 10 of this guide contains a tutorial on the subject. The manual pages for
curses are in Section (3X), and those for terminfo are in Section (4) of the Programmer's
Re ference Manual.

3.5 PROGRAMMING SUPPORT TOOLS

This section covers GENIX V.3 system components that are part of the programming
environment, but that have a highly specialized use. We refer to such things as:

e link edit command language
o Common Object File Format
e libraries

e Symbolic Debugger

e lint as a portability tool

3.5.1 Link Edit Command Language

The link editor command language is for use when the default arrangement of the 1d output
will not do the job. The default locations for the standard Common Object File Format sections
are described in a.out(4) in the Programmer’s Reference Manual. On a Series 32000
Computer, when an a.out file is loaded into memory for execution, the text segment starts at
the first available location, and the data section starts at the next segment boundary after the
end of the text. The stack begins at 0XF600000 for DB32332 and 0X20000000 for DB32332B
and grows to lower memory addresses.

The link editor command language provides directives for describing different arrangements.
The two major types of link editor directives are MEMORY and SECTIONS. MEMORY
directives can be used to define the boundaries of configured and unconfigured sections of
memory Wwithin a machine, to name sections, and to assign specific attributes (read, write,
execute, and initialize) to portions of memory. SECTIONS directives, among a lot of other
functions, can be used to bind sections of the object file to specific addresses within the
configured portions of memory.

Why would you want to be able to do those things? Well, the truth is that in the majority of
cases you don’t have to worry about it. The need to control the link editor output becomes
more urgent under two, possibly related, sets of circumstances.

1. Your application is large and consists of a lot of object files.

2. The hardware your application is to run on is tight for space.

3-15

3.5.1.1 Where to Find More Information

Chapter 12 of this guide gives a detailed description of the subject.

3.5.2 Common Object File Format

The details of the Common Object File Format have never been looked upon as stimulating
reading. In fact, they have been recommended to hard-core insomniacs as preferred bedtime
fare. However; if you’re going to break into the ranks of really sophisticated GENIX V.3 system
programmers, you're going to have to get a good grasp of COFF. A knowledge of COFF is
fundamental to using the link editor command language. It is also good background knowledge
for tasks such as: '

e setting up archive libraries or shared libraries
e using the Symbolic Debugger

The following system header files contain definitions of data structures of parts of the Common
Object File Format:

<syms.h > symbol table format
<linenum.h> line number entries
<ldfcn.h> COFF access routines
<filehdr.h > file header for a common object file

- <a.outh> common assembler and link editor output
<scnhdr.h > section header for a common object file
<reloc.h > relocation information for a common object file

<storclass.h> storage classes for common object files

The object file access routines are described in Section 3.5.3.1.

3.5.2.1 Where to Find More Information
Chapter 11 of this guide gives a detailed description of COFF.

3.5.3 Libraries

A library is a collection of related object files and/or declarations that simplify programming
effort. Programming groups involved in the development of applications often find it
convenient to establish private libraries. For example, an application with a number of
programs using a common data base can keep the 1/0 routines in a library that is searched at
link edit time.

Prior to the GENIX V.3 System release, the libraries, whether system supplied or application
developed, were collections of common object format files stored in an archive (filename.a) file
that was searched by the link editor to resolve references. Files in the archive that were needed
to satisfy unresolved references became a part of the resulting executable.

3-16

Beginning with the GENIX V.3 release, shared libraries are supported. Shared libraries are
similar to archive libraries in that they are collections of object files that are acted upon by the
link editor. The difference, however, is that shared libraries perform a static linking between
the file in the library and the executable that is the output of 1d. The result is a saving of
space, because all executables that need a file from the library share a single copy. We go into
shared libraries later in this section.

In Chapter 2 we described many of the functions that are found in the standard C library,
libc.a. The next two sections describe two other libraries, the object file library and the math
library.

3.5.3.1 The Object File Library

The object file library provides functions for the access and manipulation of object files. (See
Table 3-1 for a list of functions and their descriptions.) Some functions locate portions of an
object file such as the symbol table, the file header, sections, and line number entries associated
with a function. Other functions read these types of entries into memory. The need to work at
this level of detail with object files occurs most often in the development of new tools that
manipulate object files. For a description of the format of an object file, see Chapter 11. This
library consists of several portions. The functions reside in /lib/libld.a and are loaded during
the compilation of a C language program by the -1 command line option:

cc file —11d

which causes the link editor to search the object file library. The argument -11d must appear
after all files that reference functions in libld.a.

The following header files must be included in the source code.

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

3.5.3.2 Common Object File Interface Macros (1dfcn.h)

The interface between the calling program and the object file access routines is based on the
defined type LDFILE, which is in the header file 1dfcn.h (see 1dfcn(4)). The primary purpose
of this structure is to provide uniform access to both simple object files and to object files that
are members of an archive file.

The function 1dopen(3X) allocates and initializes the LDFILE structure and returns a pointer
to the structure. The fields of the LDFILE structure may be accessed individually through the
following macros:

e The TYPE macro returns the magic number of the file, which is used to distinguish
between archive files and object files that are not part of an archive.

e The IOPTR macro returns the file pointer, which was opened by ldopen(3X) and is used
by the input/output functions of the C library.

e The OFFSET macro returns the file address of the beginning of the object file. This value
is non-zero only if the object file is a member of the archive file.

3-17

TABLE 3-1. OBJECT FILE LIBRARY FUNCTIONS

FUNCTION | REFERENCE BRIEF DESCRIPTION

1daclose 1dclose(3X) Close object file being processed.

1dahread dahread(3X) Read archive header.

1daopen ldopen(3X) Open object file for reading.

ldclose 1dclose(3X) Close object file being processed.

ldfhread 1dfhread(3X) Read file header of object file being
processed.

ldgetname ldgetname(3X) | Retrieve the name of an object file
symbol table entry.

1dlinit 1dlread(3X) Prepare object file for reading line
number entries via ldlitem.

1dlitem 1dlread(3X) Read line number entry from object file
after 1dlinit. -

1dlread ldiread(3X) Read line number entry from object

‘ file.

1dlseek 1d1seek(3X) Seeks to the line number entries of the
object file being processed.

ldnlseek 1dl1seek(3X) Seeks to the line number entries of the

object file being processed given the
name of a section.

3-18

TABLE 3-1. (Cont)

FUNCTION | REFERENCE BRIEF DESCRIPTION

ldnrseek l1drseek(3X) Seeks to the relocation entries of the
object file being processed given the
name of a section.

1dnshread 1dshread(3X) | Read section header of the named
section of the object file being processed.

1dnsseek 1dsseek(3X) Seeks to the section of the object file
being processed given the name of a
section.

ldohseek 1dohseek(3X) Seeks to the optional file header of the
object file being processed.

1dopen 1dopen(3X) Open object file for reading.

1drseek 1drseek(3X) Seeks to the relocation entries of the
object file being processed.

1dshread ldshread(3X) | Read section header of an object file
being processed.

ldsseek 1dsseek(3X) Seeks to the section of the object file
being processed.

ldtbindex 1dtbindex(3X) | Returns the long index of the symbol
table entry at the current position of
the object file being processed.

ldtbread 1dtbread(3X) Reads a specific symbol table entry of

' the object file being processed.

1dtbseek 1dtbseek(3X) | Seeks to the symbol table of the object
file being processed. .

sgetl sputl(3X) Access long integer data in a machine
independent format.

sputl sputl(3X) Translate a long integer into a machine

independent format.

3-19

e The HEADER macro accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros parallel the input/output
functions in the C library; each macro translates a reference to an LDFILE structure into a
reference to its file descriptor field. The available macros are described in ldfcn(4) in the
Programmer’s Reference Manual.

3.5.3.3 The Mflth Library

The math library package consists of functions and a header file. The functions are located and
loaded during the compilation of a C language program by the —1 option on a command line,
as follows:

cc file —Im

This option causes the link editor to search the math library, libm.a. In addition to the request
to load the functions, the header file of the math library should be included in the program
being compiled.

This is accomplished by including the line:
#include <math.h>
near the beginning of each file that uses the routines.
The functions are grouped into the following categories:
e trigonometric functions
e Bessel functions
e hyperbolic functions

e miscellaneous functions

3-20

3.5.3.4 Trigonometric Functions

These functions are used to compute angles (in radian measure), sines, cosines, and tangents. All
of these values are expressed in double-precision.

FUNCTION | REFERENCE BRIEF DESCRIPTION
acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of a ratio.
cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

3.5.3.5 Bessel Functions

These functions calculate Bessel functions of the first and second kinds of several orders for real
values. The Bessel functions are j0, j1, jn, y0, y1, and yn. The functions are located in section

bessel(3MD).

3.5.3.6 Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent for real values.

FUNCTION | REFERENCE BRIEF DESCRIPTION
cosh sinh(3M) Return hyperbolic cosine.
sinh sinh(3M) Return hyperbolic sine.
tanh sinh(3M) Return hyperbolic tangent.

3-21

3.5.3.7 Miscellaneous Functions

These functions cover a wide variety of operations, such as natural logarithm, exponential, and
absolute value. In addition, several are provided to truncate the integer portion of double-
precision numbers.

FUNCTION | REFERENCE BRIEF DESCRIPTION

ceil floor(3M) Returns the smallest integer not less than a
given value.

exp exp(3M) Returns the exponential function of a given
value.

fabs floor(3M) Returns the absolute value of a given value.

floor floor(3M) Returns the largest integer not greater than
a given value.

fmod floor(3M) Returns the remainder! produced by the

division of two given values.

gamma gamma(3M) Returns the natural log of the absolute
value of the result of applying the gamma
function to a given value.

hypot hypot(3M) Return the square root of the sum of the
squares of two numbers.

log exp(3M) Returns the natural logarithm of a given
value.

log10 exp(3M) Returns the logarithm base ten of a given
value.

matherr matherr(3M) | Error-handling function.

pow exp(3M) Returns the result of a given value raised to

another given value.

sqrt exp(3M) Returns the square root of a given value.

3-22

3.5.3.8 Shared Libraries

As noted above, beginning with the GENIX V.3 release, shared libraries are supported. Not only
are some system libraries (libc and the networking library) available in both archive and
shared library form, but also applications have the option of creating private application shared
libraries.

The reason why shared libraries are desirable is that they save space, both on disk and in
memory. With an archive library, when the link editor goes to the archive to resolve a
reference it takes a copy of the object file that it needs for the resolution and binds it into the
a.out file. From that point on the copied file is a part of the executable, whether it is in
memory to be run or sitting in secondary storage. If you have a lot of executables that use, say,
printf (which just happens to require much of the standard 1/0 library) you can be talking
about a sizeable amount of space.

With a shared library, the link editor does not copy code into the executable files. When the
operating system starts a process that uses a shared library it maps the shared library contents
into the address space of the process. Only one copy of the shared code exists, and many
processes can use it at the same time.

This fundamental difference between archives and shared libraries has another significant
aspect. When code in an archive library is modified, all existing executables are uneffected.
They continue using the older version until they are re-link edited. When code in a shared
library is modified, all programs that share that code use the new version the next time they
are executed.

All this may sound like a really terrific deal, but as with most things in life there are
complications. To begin with, in the paragraphs above we didn’t give you quite all the facts.
For example, each process that uses shared library code gets its own copy of the entire data
region of the library. It is actually only the text region that is really shared. So the truth is
that shared libraries can add space to executing a.out’s even though the chances are good that
they will cause more shrinkage than expansion. What this means is that when there is a choice
between using a shared library and an archive, you shouldn’t use the shared library unless it
saves space. If you were using a shared libc to access only strcmp, for example, you would
pick up more in shared library data than you would save by sharing the text.

The answer to this problem, and to others that are somewhat more complex, is to assign the
responsibility for shared libraries to a central person or group within the application. The
shared library developer should be the one to resolve questions of when to use shared and when
to use archive system libraries. If a private library is to be built for your application, one
person or organization should be responsible for its development and maintenance.

3-23

3.5.3.9 Where to Find More Information

The sample application at the end of this chapter includes an example of the use of a shared
library. Chapter 8 of this guide describes how shared libraries are built and maintained.

3.5.4 Symbolic Debugger

The use of sdb was mentioned briefly in Chapter 2. In this section we want to say a few words
about sdb within the context of an application development project.

Sdb works on a process, and enables a programmer to find errors in the code. It is a tool a
programmer might use while coding and unit testing a program, to make sure it runs according
to its design. Sdb would normally be used prior to the time the program is turned over, along
with the rest of the application, to testers. During this phase of the application development
cycle programs are compiled with the —g option of cc to facilitate the use of the debugger.
The symbol table should not be stripped from the object file. Once the programmer is satisfied
that the program is error-free, strip(1) can be used to reduce the file storage overhead taken by
the file.

If the application uses a private shared library, the possibility arises that a program bug may be
located in a file that resides in the shared library. Dealing with a problem of this sort calls for
coordination by the administrator of the shared library. Any change to an object file that is
part of a shared library means the change effects all processes that use that file. One program’s
bug may be another program’s feature.

3.5.4.1 Where to Find More Information

Chapter 15 of this guide contains information on how to use sdb. The manual page is in
Section (1) of the Programmer’s Reference Manual.

3.5.5 Lint as a Portability Tool

It is a characteristic of the GENIX V.3 system that language compilation systems are somewhat
permissive. Generally speaking it is a design objective that a compiler should run fast. Most C
compilers, therefore, let some things go unflagged as long as the language syntax is observed
statement by statement. This sometimes means that while your program may run, the output
will have some surprises. It also sometimes means that while the program may run on the
machine on which the compilation system runs, there may be real difficulties in running it on
some other machine.

That’s where lint comes in. Lint produces comments about inconsistencies in the code. The
types of anomalies flagged by lint are:

e cases of disagreement between the type of value expected from a called function and
what the function actually returns

e disagreement between the types and number of arguments expected by functions and
what the function receives

3-24

e inconsistencies that might prove to be bugs

e things that might cause portability problems
Here is an example of a portability problem that would be caught by lint.
Code such as this:

int i = 1seek(fdes, offset, whence)

would get by most compilers. However, Iseek returns a long integer representing the address
of a location in the file. On a machine with a 16-bit integer and a bigger long int, it would
produce incorrect results, because i would contain only the last 16 bits of the value returned.

Since it is reasonable to expect that an application written for a GENIX V.3 system machine will
be able to run on a variety of computers, it is important that the use of lint be a regular part
of the application development.

3.5.5.1 Where to Find More Information

Chapter 16 of this guide contains a description of lint with examples of the kinds of conditions
it uncovers. The manual page is in Section (1) of the Programmer’s Re ference Manual.

3.6 PROJECT CONTROL TOOLS

Volumes have been written on the subject of project control. It is an item of top priority for
the managers of any application development team. Two GENIX V.3 system tools that can play
a role in this area are described in this section.

3.6.1 Make

Make is extremely useful in an application development project for keeping track of what
object files need to be recompiled as changes are made to source code files. One of the
characteristics of programs in a GENIX V.3 system environment is that they are made up of
many small pieces, each in its own object file, that are link edited together to form the
executable file. Quite a few of the GENIX V.3 system tools are devoted to supporting that style
of program architecture. For example, archive libraries, shared libraries and even the fact that
the cc command accepts .o files as well as .c files, and that it can stop short of the 1d step and
produce .o files instead of an a.out, are all important elements of modular architecture. The
two main advantages of this type of programming are that

e A file that performs one function can be re-used in any program that needs it.
e When one function is changed, the whole program does not have to be recompiled.

On the flip side, however, a consequence of the proliferation of object files is an increased
difficulty in keeping track of what does need to be recompiled, and what doesn’t. Make is
designed to help deal with this problem. You use make by describing in a specification file,
called makefile, the relationship (that is, the dependencies) between the different files of your
program. Once having done that, you conclude a session in which possibly a number of your
source code files have been changed by running the make command. Make takes care of

3-25

generating a new a.out by comparing the time—last—changed of your source code files with the
dependency rules you have given it.

Make has the ability to work with files in archive libraries or under control of the Source Code
Control System (SCCS).

3.6.1.1 Where to Find More Information

The make(1) manual page is contained in the Programmer’s Reference Manual. Chapter 13
of this guide gives a complete description of how to use make.

3.6.2 SCCS

SCCS is an acronym for Source Code Control System. It consists of a set of 14 commands used
to track evolving versions of files. Its use is not limited to source code; any text files can be
handled, so an application’s documentation can also be put under control of SCCS. SCCS can:

e store and retrieve files under its control

e allow no more than a single copy of a file to be edited at one time
e provide an audit trail of chan